Equations-of-motion approach to the spin-12Ising model on the Bethe lattice
We exactly solve the ferromagnetic spin- 1/2 Ising model on the Bethe lattice in the presence of an external magnetic field by means of the equations of motion method within the Green's function formalism. In particular, such an approach is applied to an isomorphic model of localized Fermi particles interacting via an intersite Coulomb interaction. A complete set of eigenoperators is found together with the corresponding eigenvalues. The Green's functions and the correlation functions are written in terms of a finite set of parameters to be self-consistently determined. A procedure is developed that allows us to exactly fix the unknown parameters in the case of a Bethe lattice with any coor…
Einstein, Planck and Vera Rubin: Relevant Encounters Between the Cosmological and the Quantum Worlds
In Cosmology and in Fundamental Physics there is a crucial question like: where the elusive substance that we call Dark Matter is hidden in the Universe and what is it made of? that, even after 40 years from the Vera Rubin seminal discovery [1] does not have a proper answer. Actually, the more we have investigated, the more this issue has become strongly entangled with aspects that go beyond the established Quantum Physics, the Standard Model of Elementary particles and the General Relativity and related to processes like the Inflation, the accelerated expansion of the Universe and High Energy Phenomena around compact objects. Even Quantum Gravity and very exotic Dark Matter particle candid…
Modification of the Bloch law in ferromagnetic nanostructures
The temperature dependence of magnetization in ferromagnetic nanostructures (e.g., nanoparticles or nanoclusters) is usually analyzed by means of an empirical extension of the Bloch law sufficiently flexible for a good fitting to the observed data and indicates a strong softening of magnetic coupling compared to the bulk material. We analytically derive a microscopic generalization of the Bloch law for the Heisenberg spin model which takes into account the effects of size, shape and various surface boundary conditions. The result establishes explicit connection to the microscopic parameters and differs significantly from the existing description. In particular, we show with a specific examp…
Thermodynamics of the Classical Planar Ferromagnet Close to the Zero-Temperature Critical Point: A Many-Body Approach
We explore the low-temperature thermodynamic properties and crossovers of ad-dimensional classical planar Heisenberg ferromagnet in a longitudinal magnetic field close to its field-induced zero-temperature critical point by employing the two-time Green’s function formalism in classical statistical mechanics. By means of a classical Callen-like method for the magnetization and the Tyablikov-like decoupling procedure, we obtain, for anyd, a low-temperature critical scenario which is quite similar to the one found for the quantum counterpart. Remarkably, ford>2the discrimination between the two cases is found to be related to the different values of the shift exponent which governs the beha…