0000000000352604

AUTHOR

Adele Naddeo

0000-0002-0723-9343

showing 4 related works from this author

Equations-of-motion approach to the spin-12Ising model on the Bethe lattice

2006

We exactly solve the ferromagnetic spin- 1/2 Ising model on the Bethe lattice in the presence of an external magnetic field by means of the equations of motion method within the Green's function formalism. In particular, such an approach is applied to an isomorphic model of localized Fermi particles interacting via an intersite Coulomb interaction. A complete set of eigenoperators is found together with the corresponding eigenvalues. The Green's functions and the correlation functions are written in terms of a finite set of parameters to be self-consistently determined. A procedure is developed that allows us to exactly fix the unknown parameters in the case of a Bethe lattice with any coor…

Bethe latticeQuantum mechanicsCoulombEquations of motionIsing modelFinite setLattice model (physics)Eigenvalues and eigenvectorsMagnetic fieldMathematicsMathematical physicsPhysical Review E
researchProduct

Einstein, Planck and Vera Rubin: Relevant Encounters Between the Cosmological and the Quantum Worlds

2021

In Cosmology and in Fundamental Physics there is a crucial question like: where the elusive substance that we call Dark Matter is hidden in the Universe and what is it made of? that, even after 40 years from the Vera Rubin seminal discovery [1] does not have a proper answer. Actually, the more we have investigated, the more this issue has become strongly entangled with aspects that go beyond the established Quantum Physics, the Standard Model of Elementary particles and the General Relativity and related to processes like the Inflation, the accelerated expansion of the Universe and High Energy Phenomena around compact objects. Even Quantum Gravity and very exotic Dark Matter particle candid…

High Energy Physics - TheoryGeneral Physics and AstronomyNature of dark matter01 natural sciencesGeneral Relativity and Quantum CosmologyCosmologyClassical vs quantum cosmologyHigh Energy Physics - Phenomenology (hep-ph)010303 astronomy & astrophysicsQuantumMathematical PhysicsQuantum gravity and cosmologyPhysicsModification of general relativityChaplygin Gaslcsh:QC1-999CosmologyHigh Energy Physics - PhenomenologyExpansion of the UniversesymbolsGeneral RelativityGeneral relativityMaterials Science (miscellaneous)BiophysicsFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Metric expansion of spacesymbols.namesakeTheory of relativitySettore FIS/05 - Astronomia e Astrofisica0103 physical sciencesDark matterddc:530Cosmological ModelsPhysical and Theoretical ChemistryPlanckEinsteindark matter; galaxies; nature of dark matter; beyond standard model; modification of general relativity; quantum gravity and cosmology; expansion of the Universe010308 nuclear & particles physicsFísicaGalaxiesAstrophysics - Astrophysics of GalaxiesCosmosEpistemologyHigh Energy Physics - Theory (hep-th)quantum gravityAstrophysics of Galaxies (astro-ph.GA)Quantum gravityBeyond standard modellcsh:Physics
researchProduct

Modification of the Bloch law in ferromagnetic nanostructures

2014

The temperature dependence of magnetization in ferromagnetic nanostructures (e.g., nanoparticles or nanoclusters) is usually analyzed by means of an empirical extension of the Bloch law sufficiently flexible for a good fitting to the observed data and indicates a strong softening of magnetic coupling compared to the bulk material. We analytically derive a microscopic generalization of the Bloch law for the Heisenberg spin model which takes into account the effects of size, shape and various surface boundary conditions. The result establishes explicit connection to the microscopic parameters and differs significantly from the existing description. In particular, we show with a specific examp…

PhysicsCouplingCondensed Matter - Mesoscale and Nanoscale PhysicsFOS: Physical sciencesGeneral Physics and AstronomyInductive couplingNanoclustersMagnetizationFerromagnetismLawMesoscale and Nanoscale Physics (cond-mat.mes-hall)FerromagnetismSpin modelLarge deviations theoryBoundary value problem
researchProduct

Thermodynamics of the Classical Planar Ferromagnet Close to the Zero-Temperature Critical Point: A Many-Body Approach

2012

We explore the low-temperature thermodynamic properties and crossovers of ad-dimensional classical planar Heisenberg ferromagnet in a longitudinal magnetic field close to its field-induced zero-temperature critical point by employing the two-time Green’s function formalism in classical statistical mechanics. By means of a classical Callen-like method for the magnetization and the Tyablikov-like decoupling procedure, we obtain, for anyd, a low-temperature critical scenario which is quite similar to the one found for the quantum counterpart. Remarkably, ford>2the discrimination between the two cases is found to be related to the different values of the shift exponent which governs the beha…

Computer Science::Machine LearningPhysicsArticle SubjectCondensed matter physicsThermodynamicsStatistical mechanicsCondensed Matter PhysicsComputer Science::Digital Librarieslcsh:QC1-999Statistics::Machine LearningReduced propertiesCritical point (thermodynamics)Critical lineComputer Science::Mathematical SoftwareExponentCritical exponentQuantumlcsh:PhysicsPhase diagramAdvances in Condensed Matter Physics
researchProduct