0000000000352724

AUTHOR

Dimitra Kanta

All-Optical Spin Locking in Alkali-Vapor Magnetometers

The nonlinear Zeeman effect can induce splittings and asymmetries of magnetic-resonance lines in the geophysical magnetic-field range. We demonstrate a scheme to suppress the nonlinear Zeeman effect all optically based on spin locking. Spin locking is achieved with an effective oscillating magnetic field provided by the AC Stark-shift of an intensity-modulated and polarization-modulated laser beam. This results in the collapse of the multi-component asymmetric magnetic-resonance line with about 100 Hz width in the Earth-field range into a peak with a central component width of 25Hz. The technique is expected to be broadly applicable in practical magnetometry, potentially boosting the sensit…

research product

Heading-Error-Free Optical Atomic Magnetometry in the Earth-Field Range

Alkali-metal atomic magnetometry is widely used due to its high sensitivity and cryogen-free operation. However, when operating in geomagnetic field, it suffers from heading errors originating from nonlinear Zeeman (NLZ) splittings and magnetic resonance asymmetries, which lead to difficulties in mobile-platform measurements. We demonstrate an alignment based $^{87}$Rb magnetometer, which, with only a single magnetic resonance peak and well-separated hyperfine transition frequencies, is insensitive or even immune to NLZ-related heading errors. It is shown that the magnetometer can be implemented for practical measurements in the geomagnetic environments and the photon-shot-noise-limited sen…

research product

Evidence for degenerate mirrorless lasing in alkali metal vapor: forward beam magneto-optical experiment

We report an experimental observation of degenerate mirrorless lasing in forward direction under excitation of a dilute atomic Rb vapor with a single linearly polarized cw laser light resonant with cycling Fe > Fg atomic D2 transitions. Light polarized orthogonally to the laser light is generated for the input light intensity exceeding a threshold value of about 3 mW/cm^2. Application of a transverse magnetic field directed along the input light polarization reveals a sharp about 20 mG wide magnetic resonance centered at B = 0. Increasing the incident light intensity from 3 to 300 mW/cm^2, the generated light undergoes rapid amplitude increase followed by a decline and resonance broadeni…

research product