0000000000352774
AUTHOR
M. Aichele
Structural and conformational dynamics of supercooled polymer melts: Insights from first-principles theory and simulations
We report on quantitative comparisons between simulation results of a bead-spring model and mode-coupling theory calculations for the structural and conformational dynamics of a supercooled, unentangled polymer melt. We find semiquantitative agreement between simulation and theory, except for processes that occur on intermediate length scales between the compressibility plateau and the amorphous halo of the static structure factor. Our results suggest that the onset of slow relaxation in a glass-forming melt can be described in terms of monomer-caging supplemented by chain connectivity. Furthermore, a unified atomistic description of glassy arrest and of conformational fluctuations that (as…
Static Properties of a Simulated Supercooled Polymer Melt: Structure Factors, Monomer Distributions Relative to the Center of Mass, and Triple Correlation Functions
We analyze structural and conformational properties in a simulated bead-spring model of a non-entangled, supercooled polymer melt. We explore the statics of the model via various structure factors, involving not only the monomers, but also the center of mass (CM). We find that the conformation of the chains and the CM-CM structure factor, which is well described by a recently proposed approximation [Krakoviack et al., Europhys. Lett. 58, 53 (2002)], remain essentially unchanged on cooling toward the critical glass transition temperature of mode-coupling theory. Spatial correlations between monomers on different chains, however, depend on temperature, albeit smoothly. This implies that the g…
Glassy dynamics of simulated polymer melts: Coherent scattering and van Hove correlation functions
Whereas the first part of this paper dealt with the relaxation in the β-regime, this part investigates the final relaxation (α-relaxation) of a simulated polymer melt consisting of short non-entangled chains in the supercooled state above the critical temperature of ideal mode-coupling theory (MCT). The temperature range covers the onset of a two-step relaxation behaviour down to a temperature merely 2% above . We monitor the incoherent intermediate scattering function as well as the coherent intermediate scattering function of both a single chain and the melt over a wide range of wave numbers q. Upon approaching the coherent α-relaxation time of the melt increases strongly close to the max…