0000000000352775

AUTHOR

Song-ho Chong

showing 2 related works from this author

Structural and conformational dynamics of supercooled polymer melts: Insights from first-principles theory and simulations

2007

We report on quantitative comparisons between simulation results of a bead-spring model and mode-coupling theory calculations for the structural and conformational dynamics of a supercooled, unentangled polymer melt. We find semiquantitative agreement between simulation and theory, except for processes that occur on intermediate length scales between the compressibility plateau and the amorphous halo of the static structure factor. Our results suggest that the onset of slow relaxation in a glass-forming melt can be described in terms of monomer-caging supplemented by chain connectivity. Furthermore, a unified atomistic description of glassy arrest and of conformational fluctuations that (as…

Quantitative Biology::BiomoleculesMaterials scienceThermodynamicsFOS: Physical sciences02 engineering and technologyCondensed Matter - Soft Condensed Matter021001 nanoscience & nanotechnologyPlateau (mathematics)01 natural sciencesAmorphous solidCondensed Matter::Soft Condensed Matterchemistry.chemical_compoundMonomerchemistry0103 physical sciencesCompressibilityRelaxation (physics)Soft Condensed Matter (cond-mat.soft)Halo010306 general physics0210 nano-technologySupercoolingStructure factor[PHYS.COND.CM-SCM]Physics [physics]/Condensed Matter [cond-mat]/Soft Condensed Matter [cond-mat.soft]ComputingMilieux_MISCELLANEOUS
researchProduct

Static Properties of a Simulated Supercooled Polymer Melt: Structure Factors, Monomer Distributions Relative to the Center of Mass, and Triple Correl…

2004

We analyze structural and conformational properties in a simulated bead-spring model of a non-entangled, supercooled polymer melt. We explore the statics of the model via various structure factors, involving not only the monomers, but also the center of mass (CM). We find that the conformation of the chains and the CM-CM structure factor, which is well described by a recently proposed approximation [Krakoviack et al., Europhys. Lett. 58, 53 (2002)], remain essentially unchanged on cooling toward the critical glass transition temperature of mode-coupling theory. Spatial correlations between monomers on different chains, however, depend on temperature, albeit smoothly. This implies that the g…

MODE-COUPLING THEORYMaterials scienceGLASS-TRANSITIONRELAXATION REGIMEpacs:61.20.JaThermodynamicsFOS: Physical sciencesCondensed Matter - Soft Condensed Matter01 natural sciencesTriple correlation010305 fluids & plasmasCOHERENT SCATTERINGchemistry.chemical_compoundHOVE CORRELATION-FUNCTIONS0103 physical sciencesddc:530010306 general physicsSupercoolingStaticsCHAIN-FOLDED STRUCTURESchemistry.chemical_classificationQuantitative Biology::BiomoleculesPolymerMOLECULAR-DYNAMICS SIMULATIONPACS: 61.25.Hq 61.20.JaCondensed Matter::Soft Condensed MatterMonomerchemistrypacs:61.25.HqLENNARD-JONES SYSTEMBETA-RELAXATIONSoft Condensed Matter (cond-mat.soft)PHASE-TRANSITIONSCenter of massGlass transitionStructure factor[PHYS.COND.CM-SCM]Physics [physics]/Condensed Matter [cond-mat]/Soft Condensed Matter [cond-mat.soft]
researchProduct