0000000000353092
AUTHOR
Anke Roiger
The ACRIDICON-CHUVA campaign: Studying tropical deep convective clouds and precipitation over Amazonia using the new German research aircraft HALO
Abstract Between 1 September and 4 October 2014, a combined airborne and ground-based measurement campaign was conducted to study tropical deep convective clouds over the Brazilian Amazon rain forest. The new German research aircraft, High Altitude and Long Range Research Aircraft (HALO), a modified Gulfstream G550, and extensive ground-based instrumentation were deployed in and near Manaus (State of Amazonas). The campaign was part of the German–Brazilian Aerosol, Cloud, Precipitation, and Radiation Interactions and Dynamics of Convective Cloud Systems–Cloud Processes of the Main Precipitation Systems in Brazil: A Contribution to Cloud Resolving Modeling and to the GPM (Global Precipitatio…
Observations of meteoric material and implications for aerosol nucleation in the winter Arctic lower stratosphere derived from in situ particle measurements
Number concentrations of total and non-volatile aerosol particles with size diameters >0.01 μm as well as particle size distributions (0.4–23 μm diameter) were measured in situ in the Arctic lower stratosphere (10–20.5 km altitude). The measurements were obtained during the campaigns European Polar Stratospheric Cloud and Lee Wave Experiment (EUPLEX) and Envisat-Arctic-Validation (EAV). The campaigns were based in Kiruna, Sweden, and took place from January to March 2003. Measurements were conducted onboard the Russian high-altitude research aircraft Geophysica using the low-pressure Condensation Nucleus Counter COPAS (COndensation PArticle Counter System) and a modified F…
Nitric Acid Trihydrate (NAT) formation at low NAT supersaturation in Polar Stratospheric Clouds (PSCs)
International audience; A PSC was detected on 6 February 2003 in the Arctic stratosphere by in-situ measurements onboard the high-altitude research aircraft Geophysica. Low number densities (~10-4cm-3) of small nitric acid (HNO3) containing particles (dTNAT, these NAT particles have the potential to grow further and to remove HNO3 from the stratosphere, thereby enhancing polar ozone loss. Interestingly, the NAT particles formed in less than a day at temperatures just slightly below TNAT (T>TNAT-3.1K). This unique measurement of PSC formation at extremely low NAT saturation ratios (SNAT?10) constrains current NAT nucleation theories. We suggest, that the NAT particles have formed heterogeneo…
Detection of reactive nitrogen containing particles in the tropopause region? Evidence for a tropical nitric acid trihydrage (NAT) belt
The detection of nitric acid trihydrate (NAT, HNO<sub>3</sub>&times;3H<sub>2</sub>O) particles in the tropical transition layer (TTL) harmonizes our understanding of polar stratospheric cloud formation. Large reactive nitrogen (NO<sub>y</sub>) containing particles were observed on 8 August 2006 by instruments onboard the high altitude research aircraft M55-Geophysica near and below the tropical tropopause. The particles, most likely NAT, have diameters less than 6 &mu;m and concentrations below 10<sup>-4</sup> cm<sup>&minus;3</sup>. The NAT particle layer was repeatedly detected at altitudes between 15.1 and 17.5 km ove…
Evaluation of simulated CO2 power plant plumes from six high-resolution atmospheric transport models
Power plants and large industrial facilities contribute more than half of global anthropogenic CO2 emissions. Quantifying the emissions of these point sources is therefore one of the main goals of the planned constellation of anthropogenic CO2 monitoring satellites (CO2M) of the European Copernicus program. Atmospheric transport models may be used to study the capabilities of such satellites through observing system simulation experiments and to quantify emissions in an inverse modeling framework. How realistically the CO2 plumes of power plants can be simulated and how strongly the results may depend on model type and resolution, however, is not well known due to a lack of observations ava…