0000000000353109

AUTHOR

Paulo Artaxo

0000-0001-7754-3036

showing 9 related works from this author

The ACRIDICON-CHUVA campaign: Studying tropical deep convective clouds and precipitation over Amazonia using the new German research aircraft HALO

2016

Abstract Between 1 September and 4 October 2014, a combined airborne and ground-based measurement campaign was conducted to study tropical deep convective clouds over the Brazilian Amazon rain forest. The new German research aircraft, High Altitude and Long Range Research Aircraft (HALO), a modified Gulfstream G550, and extensive ground-based instrumentation were deployed in and near Manaus (State of Amazonas). The campaign was part of the German–Brazilian Aerosol, Cloud, Precipitation, and Radiation Interactions and Dynamics of Convective Cloud Systems–Cloud Processes of the Main Precipitation Systems in Brazil: A Contribution to Cloud Resolving Modeling and to the GPM (Global Precipitatio…

ConvectionAtmospheric ScienceACRIDICON–CHUVA010504 meteorology & atmospheric sciencesMeteorologyResearch AircraftCloud computingPrecipitation Formation010502 geochemistry & geophysics01 natural sciencesMess- und Sensortechnik OPPrecipitation (meteorology)tropical deep convective cloudsRemote SensingHaloAmazoniaCloudsRange (aeronautics)ddc:550Radiative transferPrecipitation0105 earth and related environmental sciencesLidarAnthropogenic AerosolsVerkehrsmeteorologiebusiness.industryAmazon rainforestAtmosphärische SpurenstoffeDeep Convective CloudsProjektmanagement Flugexperimente OPAerosolAtmospheric ThermodynamicsEnvironmental sciencebusinessCloud Life CycleGlobal Precipitation Measurement
researchProduct

Radical Formation by Fine Particulate Matter Associated with Highly Oxygenated Molecules

2019

Highly oxygenated molecules (HOMs) play an important role in the formation and evolution of secondary organic aerosols (SOA). However, the abundance of HOMs in different environments and their relation to the oxidative potential of fine particulate matter (PM) are largely unknown. Here, we investigated the relative HOM abundance and radical yield of laboratory-generated SOA and fine PM in ambient air ranging from remote forest areas to highly polluted megacities. By electron paramagnetic resonance and mass spectrometric investigations, we found that the relative abundance of HOMs, especially the dimeric and low-volatility types, in ambient fine PM was positively correlated with the formatio…

ChinaFine particulateoxidationRadicalvolatility010501 environmental sciences01 natural scienceschemistry.chemical_compoundEnvironmental ChemistryMoleculemultiphase chemistryChemical compositionRelative species abundanceFinlandIsoprene0105 earth and related environmental sciencesNaphthaleneAerosolsAir Pollutantsmechanismshydroxyl radicalsGeneral Chemistry15. Life on landParticulateschemistry13. Climate actionBeijingEnvironmental chemistryupper troposphereoxidized moleculesmassParticulate Matterchemical-compositionsecondary organic aerosolAEROSSOL
researchProduct

General overview: European Integrated project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI)-integrating aerosol research from nano …

2011

In this paper we describe and summarize the main achievements of the European Aerosol Cloud Climate and Air Quality Interactions project (EUCAARI). EUCAARI started on 1 January 2007 and ended on 31 December 2010 leaving a rich legacy including: (a) a comprehensive database with a year of observations of the physical, chemical and optical properties of aerosol particles over Europe, (b) comprehensive aerosol measurements in four developing countries, (c) a database of airborne measurements of aerosols and clouds over Europe during May 2008, (d) comprehensive modeling tools to study aerosol processes fron nano to global scale and their effects on climate and air quality. In addition a new Pan…

Atmospheric ScienceEuropean aerosol010504 meteorology & atmospheric sciencesaerosolAerosol radiative forcingClimateclouds010501 environmental sciencesAtmospheric sciences01 natural scienceslcsh:Chemistry/dk/atira/pure/sustainabledevelopmentgoals/climate_actionAerosol cloud11. SustainabilitySDG 13 - Climate Actionddc:550particle propertiesEnvironmental policysaturation vapor-pressureschemical-transport modelMiljövetenskapair qualitylcsh:QC1-999General Circulation Model/dk/atira/pure/subjectarea/asjc/1900/1902EUCAARIEELS - Earth Environmental and Life SciencesION-INDUCED NUCLEATIONChemical transport modelMeteorologyEarth & EnvironmentEnergy / Geological Survey NetherlandsSIMULATION CHAMBER SAPHIRnuclei number concentrationSECONDARY ORGANIC AEROSOLpure component propertiesAir quality indexEnvironmental quality0105 earth and related environmental sciencesPARTICLE FORMATION EVENTSAtmosphärische Spurenstoffe[CHIM.CATA]Chemical Sciences/CatalysisCAS - Climate Air and Sustainability[SDE.ES]Environmental Sciences/Environmental and SocietyFalconAerosollcsh:QD1-99913. Climate actionmixed-phase cloudsEnvironmental scienceatmospheric sulfuric-acidEnvironmental Scienceslcsh:Physics
researchProduct

Comparing calculated microphysical properties of tropical convective clouds at cloud base with measurements during the ACRIDICON-CHUVA campaign

2016

Abstract. Reliable aircraft measurements of cloud microphysical properties are essential for understanding liquid convective cloud formation. In September 2014, the properties of convective clouds were measured with a Cloud Combination Probe (CCP), a Cloud and Aerosol Spectrometer (CAS-DPOL), and a cloud condensation nuclei (CCN) counter on board the HALO (High Altitude and Long Range Research Aircraft) aircraft during the ACRIDICON-CHUVA campaign over the Amazon region. An intercomparison of the cloud drop size distributions (DSDs) and the cloud water content derived from the different instruments generally shows good agreement within the instrumental uncertainties. The objective of this s…

ConvectionMeteorologyCloud baseEnvironmental scienceAtmospheric sciencesPhysics::Atmospheric and Oceanic PhysicsAstrophysics::Galaxy Astrophysics
researchProduct

Sensitivities of Amazonian clouds to aerosols and updraft speed

2017

Abstract. The effects of aerosol particles and updraft speed on warm-phase cloud microphysical properties are studied in the Amazon region as part of the ACRIDICON-CHUVA experiment. Here we expand the sensitivity analysis usually found in the literature by concomitantly considering cloud evolution, putting the sensitivity quantifications into perspective in relation to in-cloud processing, and by considering the effects on droplet size distribution (DSD) shape. Our in situ aircraft measurements over the Amazon Basin cover a wide range of particle concentration and thermodynamic conditions, from the pristine regions over coastal and forested areas to the southern Amazon, which is highly poll…

ConvectionAtmospheric Science010504 meteorology & atmospheric sciencesMeteorologyAmazonianCloud computing010502 geochemistry & geophysicsAtmospheric sciences01 natural scienceslcsh:ChemistryCloud basecloudmicrophysicsWolkenphysikAerosolupdraft0105 earth and related environmental sciencesAmazon rainforestbusiness.industry15. Life on landMETEOROLOGIA FÍSICAlcsh:QC1-999AerosolEffective diameterlcsh:QD1-99913. Climate actionLiquid water contentEnvironmental sciencebusinesslcsh:PhysicsAtmospheric Chemistry and Physics
researchProduct

Comparing parameterized versus measured microphysical properties of tropical convective cloud bases during the ACRIDICON–CHUVA campaign

2017

The objective of this study is to validate parameterizations that were recently developed for satellite retrievals of cloud condensation nuclei supersaturation spectra, NCCN(S), at cloud base alongside more traditional parameterizations connecting NCCN(S) with cloud base updrafts and drop concentrations. This was based on the HALO aircraft measurements during the ACRIDICON–CHUVA campaign over the Amazon region, which took place in September 2014. The properties of convective clouds were measured with a cloud combination probe (CCP), a cloud and aerosol spectrometer (CAS-DPOL), and a CCN counter onboard the HALO aircraft. An intercomparison of the cloud drop size distributions (DSDs) and the…

ConvectionAtmospheric Sciencecould condenstion nuclei010504 meteorology & atmospheric sciencesMeteorologysupersaturationCloud computing010502 geochemistry & geophysicsAtmospheric sciences01 natural scienceslcsh:ChemistryCloud baseCloud condensation nucleicloudWolkenphysikAdiabatic processupdraftAstrophysics::Galaxy AstrophysicsPhysics::Atmospheric and Oceanic Physics0105 earth and related environmental sciencesbusiness.industryDrop (liquid)CASlcsh:QC1-999Aerosollcsh:QD1-999Environmental scienceHalobusinesslcsh:Physics
researchProduct

The AeroCom evaluation and intercomparison of organic aerosol in global models

2014

This paper evaluates the current status of global modeling of the organic aerosol (OA) in the troposphere and analyzes the differences between models as well as between models and observations. Thirty-one global chemistry transport models (CTMs) and general circulation models (GCMs) have participated in this intercomparison, in the framework of AeroCom phase II. The simulation of OA varies greatly between models in terms of the magnitude of primary emissions, secondary OA (SOA) formation, the number of OA species used (2 to 62), the complexity of OA parameterizations (gas-particle partitioning, chemical aging, multiphase chemistry, aerosol microphysics), and the OA physical, chemical and op…

Atmospheric Science010504 meteorology & atmospheric sciencesMeteorologyChemical transport modelFÍSICA ATMOSFÉRICA010501 environmental sciencesAtmospheric sciences01 natural scienceslcsh:ChemistryTropospherePARTICULATE MATTERCHEMICAL-TRANSPORT MODELmedicineMass concentration (chemistry)GENERAL-CIRCULATION MODEL0105 earth and related environmental sciences[PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph]ATMOSPHERIC AEROSOLEARTH SYSTEMCLIMATE MODELVOLATILITY BASIS-SETParticulatesSeasonalitymedicine.diseaselcsh:QC1-999CARBONACEOUS AEROSOLSAerosolDeposition (aerosol physics)lcsh:QD1-999MASS-SPECTROMETER13. Climate action[SDU.STU.CL]Sciences of the Universe [physics]/Earth Sciences/ClimatologyVOLATILITY BASIS-SET BIOMASS BURNING EMISSIONS CHEMICAL-TRANSPORT MODEL GENERAL-CIRCULATION MODEL CLIMATE MODEL CARBONACEOUS AEROSOLS MASS-SPECTROMETER EARTH SYSTEM ATMOSPHERIC AEROSOL PARTICULATE MATTEREnvironmental scienceClimate modelBIOMASS BURNING EMISSIONSlcsh:Physics
researchProduct

Substantial convection and precipitation enhancements by ultrafine aerosol particles

2018

Up with ultrafine aerosol particles Ultrafine aerosol particles (smaller than 50 nanometers in diameter) have been thought to be too small to affect cloud formation. Fan et al. show that this is not the case. They studied the effect of urban pollution transported into the otherwise nearly pristine atmosphere of the Amazon. Condensational growth of water droplets around the tiny particles releases latent heat, thereby intensifying atmospheric convection. Thus, anthropogenic ultrafine aerosol particles may exert a more important influence on cloud formation processes than previously believed. Science , this issue p. 411

PollutionConvectionSupersaturationMultidisciplinary010504 meteorology & atmospheric sciencesmedia_common.quotation_subjectCondensation010502 geochemistry & geophysicsAtmospheric sciences01 natural sciencesAerosolTroposphereCloud dropletPrecipitation0105 earth and related environmental sciencesmedia_common
researchProduct

Composition and diurnal variability of the natural Amazonian aerosol

2003

As part of the Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA)-Cooperative LBA Airborne Regional Experiment (CLAIRE) 2001 campaign, separate day and nighttime aerosol samples were collected in July 2001 at a ground-based site in Amazonia, Brazil, in order to examine the composition and temporal variability of the natural “background” aerosol. A combination of analytical techniques was used to characterize the elemental and ionic composition of the aerosol. Major particle types larger than ∼0.5 μm were identified by electron and light microscopy. Both the coarse and fine aerosol were found to consist primarily of organic matter (∼70 and 80% by mass, respectively), with the coar…

Atmospheric Sciencefood.ingredientSoil ScienceMineralogyAquatic ScienceOceanographychemistry.chemical_compoundfoodGeochemistry and PetrologyEarth and Planetary Sciences (miscellaneous)Organic matterSulfateEarth-Surface ProcessesWater Science and Technologychemistry.chemical_classificationTotal organic carbonEcologySea saltPaleontologyForestryParticulatesAerosolGeophysicschemistrySpace and Planetary ScienceEnvironmental chemistryParticleBioaerosolJournal of Geophysical Research: Atmospheres
researchProduct