0000000000353228
AUTHOR
Noémie Pascault
Copper Dynamics and Impact on Microbial Communities in Soils of Variable Organic Status
International audience; The effect of soil organic status on copper impact was investigated by means of a microcosm study carried out on a vineyard soil that had been amended with varying types of organic matter during a previous long-term field experiment. Soil microcosms were contaminated at 250 mg Cu kg−1 and incubated for 35 days. Copper distribution and dynamics were assessed in the solid matrix by a sequential extraction procedure and in the soil solution by measuring total and free exchangeable copper concentrations. Copper bioavailability was also measured with a whole-cell biosensor. Modifications of microbial communities were assessed by means of biomass-C measurements and charact…
Differential copper impact on density, diversity and resistance of adapted culturable bacterial populations according to soil organic status
International audience; The effect of copper on the abundance, diversity and resistance of viable heterotrophic and copper resistant bacterial populations (CuR) was evaluated in soils differing only by their amount and type of organic matter. These soils have been obtained using a vineyard soil that had been subjected to three different organic matter managements (Not Amended (NA) or amended with Straw (S) or Conifer Compost (CC)) in a long term field experiment. Soil microcosms were artificially contaminated with copper (250 mg Cu kg−1 of soil) and incubated for 35 days. Throughout the incubation, a differential copper impact on viable heterotrophic and CuR bacterial enumeration was demons…
Role of plant residues in determining temporal patterns of the activity, size and structure of nitrate reducer communities in soil
ABSTRACT The incorporation of plant residues into soil not only represents an opportunity to limit soil organic matter depletion resulting from cultivation but also provides a valuable source of nutrients such as nitrogen. However, the consequences of plant residue addition on soil microbial communities involved in biochemical cycles other than the carbon cycle are poorly understood. In this study, we investigated the responses of one N-cycling microbial community, the nitrate reducers, to wheat, rape, and alfalfa residues for 11 months after incorporation into soil in a field experiment. A 20- to 27-fold increase in potential nitrate reduction activity was observed for residue-amended plot…
Response of soil bacterial communities to the incorporation of crop residues : influence of agricultural practices and link with the soil biological process
The effect of the location of wheat residues (soil surface vs. incorporated in soil) on their decomposition and on soil bacterial communities was investigated by the means of a field experiment. Bacterial-Automated Ribosomal Intergenic Spacer Analysis (B-ARISA) of DNA extracts from residues, detritusphere (soil adjacent to residues), and bulk soil evidenced that residues constitute the zone of maximal changes in bacterial composition. However, the location of the residues influenced greatly their decomposition and the dynamics of the colonizing bacterial communities. Sequencing of 16S rRNA gene in DNA extracts from the residues at the early, middle, and late stages of degradation confirmed …