0000000000353341

AUTHOR

Fethi Bedioui

showing 2 related works from this author

Electrochemical detection of nitric oxide in plant cell suspensions

2016

SPE IPM UB; Nitric oxide is a hydrophobic radical acting as a physiological mediator in plants. Because of its unique properties, the detection of NO in plant tissues and cell suspensions remains a challenge. For this purpose, several techniques are used, each having certain advantages and limitations such as interferences with other species, questionable sensitivity, and/or selectivity or ex situ measurement. Here we describe a very attractive approach for tracking NO in plant cell suspensions using a NO-sensitive homemade platinum/iridium-based electrochemical microsensor. This method constitutes the absolute real-time proof of the production of free NO in physiological conditions.

0106 biological sciences0301 basic medicinehome-made electrodeChemistry[SDV]Life Sciences [q-bio]fungichemistry.chemical_elementElectrochemical detectionPlant cellElectrochemistry01 natural sciencesNitric oxide03 medical and health scienceschemistry.chemical_compound030104 developmental biologyChemical engineeringnitric oxideplant cell suspensionselectrochemical detection[SDE]Environmental Sciences[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyIridiumPlatinumSelectivity010606 plant biology & botany
researchProduct

Real-time electrochemical detection of extracellular nitric oxide in tobacco cells exposed to cryptogein, an elicitor of defence responses

2008

International audience; It was previously reported that cryptogein, an elicitor of defence responses, induces an intracellular production of nitric oxide (NO) in tobacco. Here, the possibility was explored that cryptogein might also trigger an increase of NO extracellular content through two distinct approaches, an indirect method using the NO probe 4,5-diaminofluorescein (DAF-2) and an electrochemical method involving a chemically modified microelectrode probing free NO in biological media. While the chemical nature of DAF-2-reactive compound(s) is still uncertain, the electrochemical modified microelectrodes provide real-time evidence that cryptogein induces an increase of extracellular N…

0106 biological sciencesPhysiologyPLANT DEFENSE RESPONSEPlant ScienceElectrochemical detectionBiology01 natural sciencesDIETHYLAMINE NONOATENitric oxide[SDV.BV.BOT] Life Sciences [q-bio]/Vegetal Biology/BotanicsFungal Proteins03 medical and health scienceschemistry.chemical_compoundTobaccoBotanyElectrochemistryExtracellularCells Cultured030304 developmental biology0303 health sciencesFungal proteinAlgal Proteins[SDV.BV.BOT]Life Sciences [q-bio]/Vegetal Biology/BotanicsResearch PapersElectrochemical gas sensorElicitorMicroelectrodechemistryBiophysicsDIAMINOFLUORESCEINplant defence responsesIntracellularELECTROCHEMICAL SENSORNITRIC OXIDE010606 plant biology & botany
researchProduct