0000000000353840

AUTHOR

J. Mašek

showing 3 related works from this author

Electric control of the spin Hall effect by intervalley transitions

2013

Controlling spin-related material properties by electronic means is a key step towards future spintronic technologies. The spin Hall effect (SHE) has become increasingly important for generating, detecting and using spin currents, but its strength-quantified in terms of the SHE angle-is ultimately fixed by the magnitude of the spin-orbit coupling (SOC) present for any given material system. However, if the electrons generating the SHE can be controlled by populating different areas (valleys) of the electronic structure with different SOC characteristic the SHE angle can be tuned directly within a single sample. Here we report the manipulation of the SHE in bulk GaAs at room temperature by m…

Electronic structureSpin currentsSpin Hall effectElectronElectronic structureCrystal symmetrySpin-polarized electronsElectron populationGallium arsenideQuantum mechanicsGeneral Materials ScienceSemiconducting galliumStrength of materials0912 Materials EngineeringRoom temperatureSpin-½Intervalley transitionPhysicsCouplingElectromotive forceCondensed matter physicsSpintronicsMechanical EngineeringMaterial systemsGeneral ChemistryCondensed Matter::Mesoscopic Systems and Quantum Hall EffectCondensed Matter PhysicsElectric controlHeavy metalsMechanics of MaterialsSpin Hall effectSpin-orbit couplingsMaterial propertiesNature Materials
researchProduct

Spin-orbit torques in locally and globally non-centrosymmetric crystals: Antiferromagnets and ferromagnets

2016

One of the main obstacles that prevents practical applications of antiferromagnets is the difficulty of manipulating the magnetic order parameter. Recently, following the theoretical prediction [J. \v{Z}elezn\'y et al., PRL 113, 157201 (2014)], the electrical switching of magnetic moments in an antiferromagnet has been demonstrated [P. Wadley et al., Science 351, 587 (2016)]. The switching is due to the so-called spin-orbit torque, which has been extensively studied in ferromagnets. In this phenomena a non-equilibrium spin-polarization exchange coupled to the ordered local moments is induced by current, hence exerting a torque on the order parameter. Here we give a general systematic analys…

PhysicsCondensed Matter - Materials ScienceMagnetic momentCondensed matter physicsCondensed Matter - Mesoscale and Nanoscale PhysicsMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciences02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesSymmetry (physics)FerromagnetismOrientation (geometry)0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)Orbit (dynamics)TorqueAntiferromagnetismddc:530Condensed Matter::Strongly Correlated ElectronsAstrophysics::Earth and Planetary Astrophysics010306 general physics0210 nano-technologySpin (physics)
researchProduct

Relativistic Neel-order fields induced by electrical current in antiferromagnets

2014

We predict that a lateral electrical current in antiferromagnets can induce non-equilibrium N\'eel order fields, i.e. fields whose sign alternates between the spin sublattices, which can trigger ultra-fast spin-axis reorientation. Based on microscopic transport theory calculations we identify staggered current-induced fields analogous to the intra-band and to the intrinsic inter-band spin-orbit fields previously reported in ferromagnets with a broken inversion-symmetry crystal. To illustrate their rich physics and utility, we considered bulk Mn2Au with the two spin sublattices forming inversion partners, and a 2D square-lattice antiferromagnet with broken structural inversion symmetry model…

PhysicsCondensed Matter - Materials ScienceCondensed matter physicsPoint reflectionGeneral Physics and AstronomyNon-equilibrium thermodynamicsMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesTransport theory3. Good healthElectrical currentFerromagnetismQuantum mechanicsAntiferromagnetismCondensed Matter::Strongly Correlated ElectronsUltrashort pulse
researchProduct