0000000000353923

AUTHOR

Stefanie Storf

Pigment binding of photosystem I light-harvesting proteins.

Light-harvesting complexes (LHC) of higher plants are composed of at least 10 different proteins. Despite their pronounced amino acid sequence homology, the LHC of photosystem II show differences in pigment binding that are interpreted in terms of partly different functions. By contrast, there is only scarce knowledge about the pigment composition of LHC of photosystem I, and consequently no concept of potentially different functions of the various LHCI exists. For better insight into this issue, we isolated native LHCI-730 and LHCI-680. Pigment analyses revealed that LHCI-730 binds more chlorophyll and violaxanthin than LHCI-680. For the first time all LHCI complexes are now available in t…

research product

De-epoxidation of Violaxanthin in Light-harvesting Complex I Proteins

The conversion of violaxanthin (Vx) to zeaxanthin (Zx) in the de-epoxidation reaction of the xanthophyll cycle plays an important role in the protection of chloroplasts against photooxidative damage. Vx is bound to the antenna proteins of both photosystems. In photosystem II, the formation of Zx is essential for the pH-dependent dissipation of excess light energy as heat. The function of Zx in photosystem I is still unclear. In this work we investigated the de-epoxidation characteristics of light-harvesting complex proteins of photosystem I (LHCI) under in vivo and in vitro conditions. Recombinant LHCI (Lhcal-4) proteins were reconstituted with Vx and lutein, and the convertibility of Vx wa…

research product

Proteomic analysis of the photosystem I light-harvesting antenna in tomato (Lycopersicon esculentum).

Until now, more genes of the light-harvesting antenna of higher-plant photosystem I (PSI) than proteins have been described. To improve our understanding of the composition of light-harvesting complex I (LHCI) of tomato (Lycopersicon esculentum), we combined one- and two-dimensional (1-D and 2-D, respectively) gel electrophoresis with immunoblotting and tandem mass spectrometry (MS/ MS). Separation of PSI with high-resolution 1-D gels allowed separation of five bands attributed to proteins of LHCI. Immunoblotting with monospecific antibodies and MS/MS analysis enabled the correct assignment of the four prominent bands to light-harvesting proteins Lhcal -4. The fifth band was recognized by o…

research product

Pigment Binding, Fluorescence Properties, and Oligomerization Behavior of Lhca5, a Novel Light-harvesting Protein

A new potential light-harvesting protein, named Lhca5, was recently detected in higher plants. Because of the low amount of Lhca5 in thylakoid membranes, the isolation of a native Lhca5 pigment-protein complex has not been achieved to date. Therefore, we used in vitro reconstitution to analyze whether Lhca5 binds pigments and is actually an additional light-harvesting protein. By this approach we could demonstrate that Lhca5 binds pigments in a unique stoichiometry. Analyses of pigment requirements for light-harvesting complex formation by Lhca5 revealed that chlorophyll b is the only indispensable pigment. Fluorescence measurements showed that ligated chlorophylls and carotenoids are arran…

research product