0000000000354419

AUTHOR

Antonis Dragoneas

The realization of autonomous, aircraft-based, real-time aerosol mass spectrometry in the upper troposphere and lower stratosphere

Abstract. We report on the developments that enabled the field deployment of a fully-automated aerosol mass spectrometer, specially designed for high-altitude measurements on unpressurised aircraft. The merits of the two main categories of real-time aerosol mass spectrometry, i.e. (a) single particle laser desorption and ionization, and (b) continuous thermal desorption / electron impact ionization of aerosols, have been integrated into one compact apparatus with the aim to perform in-situ real-time analysis of aerosol chemical composition. The demonstrated instrument, named ERICA (European Research council Instrument for the Chemical composition of Aerosols), operated successfully aboard t…

research product

Application of an O-ring pinch device as a constant-pressure inlet (CPI) for airborne sampling

We present a novel and compact design of a constant-pressure inlet (CPI) developed for use in airborne aerosol mass spectrometry. In particular, the inlet system is optimized for aerodynamic lenses commonly used in aerosol mass spectrometers, in which efficient focusing of aerosol particles into a vacuum chamber requires a precisely controlled lens pressure, typically of a few hectopascals. The CPI device can also be used in condensation particle counters (CPCs), cloud condensation nucleus counters (CCNCs), and gas-phase sampling instruments across a wide range of altitudes and inlet pressures. The constant pressure is achieved by changing the inner diameter of a properly scaled O-ring that…

research product

In-Situ observation of New Particle Formation in the upper troposphere/lower stratosphere of the Asian Monsoon Anticyclone

Abstract. During the monsoon season of the year 2017 the airborne StratoClim mission took place in Kathmandu, Nepal with eight mission flights of the M-55 Geophysica in the upper troposphere/lower stratosphere (UT/LS) of the Asian Monsoon Anticyclone (AMA) over northern India, Nepal and Bangladesh. More than hundred events of New Particle Formation (NPF) were observed. In total, more than two hours of flight time were spent under NPF conditions as indicated by the abundant presence of ultrafine aerosols, i.e. with particle diameters dp smaller than 15 nm, which were in-situ detected by means of condensation nuclei counting techniques. Mixing ratios of ultrafine particles (nuf) of up to ~ 50…

research product

Aircraft-based observation of meteoric material in lower-stratospheric aerosol particles between 15 and 68° N

We analyse aerosol particle composition measurements from five research missions between 2014 and 2018 to assess the meridional extent of particles containing meteoric material in the upper troposphere and lower stratosphere (UTLS). Measurements from the Jungfraujoch mountaintop site and a low-altitude aircraft mission show that meteoric material is also present within middle- and lower-tropospheric aerosol but within only a very small proportion of particles. For both the UTLS campaigns and the lower- and mid-troposphere observations, the measurements were conducted with single-particle laser ablation mass spectrometers with bipolar-ion detection, which enabled us to measure the chemical c…

research product

Chemical analysis of the Asian tropopause aerosol layer (ATAL) with emphasis on secondary aerosol particles using aircraft-based in situ aerosol mass spectrometry

Abstract. Aircraft-borne in situ measurements of the chemical aerosol composition were conducted in the Asian tropopause aerosol layer (ATAL) over the Indian subcontinent in the summer of 2017, covering particle sizes below ∼3 µm. We have implemented a recently developed aerosol mass spectrometer, which adopts the laser desorption technique as well as the thermal desorption method for quantitative bulk information (i.e., a modified Aerodyne AMS), aboard the high-altitude research aircraft M-55 Geophysica. The instrument was deployed in July and August 2017 during the StratoClim EU campaign (Stratospheric and upper tropospheric processes for better Climate predictions) over Nepal, India, Ban…

research product

Chemical analysis of the Asian Tropopause Aerosol Layer (ATAL) with emphasis on secondary aerosol particles using aircraft based in situ aerosol mass spectrometry

Abstract. Aircraft borne in-situ measurements of the chemical aerosol composition were conducted in the Asian Tropopause Aerosol layer (ATAL) over the Indian subcontinent in summer 2017 covering particle sizes below 3 µm. We have implemented a recently developed aerosol mass spectrometer, which adopts the laser desorption technique as well as the thermal desorption method for quantitative bulk information (i.e. a modified Aerodyne AMS), aboard the high altitude research aircraft M-55 Geophysica. The instrument was deployed in July and August 2017 during the StratoClim EU campaign (Stratospheric and upper tropospheric processes for better climate predictions) over Nepal, India, Bangladesh, a…

research product

Application of an O-ring pinch device as a constant pressure inlet (CPI) for airborne sampling

Abstract. We present a novel and compact design of a constant pressure inlet (CPI) developed for use in airborne aerosol mass spectrometry. In particular the inlet system is optimized for aerodynamic lenses commonly used in aerosol mass spectrometers, where efficient focusing of aerosol particles into a vacuum chamber requires a precisely controlled lens pressure, typically of a few hPa. The CPI device can also be used in gas phase sampling instruments in a large range of altitude and inlet pressure. The constant pressure is achieved by changing the inner diameter of a properly scaled O-ring that acts as a critical orifice. The CPI control keeps air pressure and thereby mass flow rate (≈ 0.…

research product

Aircraft-based observation of meteoric material in lower stratospheric aerosol particles between 15 and 68° N

Abstract. In this paper we analyze aerosol particle composition measurements from five research missions conducted between 2014 and 2018 sampling the upper troposphere and lower stratosphere (UTLS), to assess the meridional extent of particles containing meteoric material. Additional data sets from a ground based study and from a low altitude aircraft mission are used to confirm the existence of meteoric material in lower tropospheric particles. Single particle laser ablation techniques with bipolar ion detection were used to measure the chemical composition of particles in a size range of approximately 150 nm to 3 μm. The five UTLS aircraft missions cover a latitude range from 15 to 68° N,…

research product

Design, characterization, and first field deployment of a novel aircraft-based aerosol mass spectrometer combining the laser ablation and flash vaporization techniques

In this paper, we present the design, development, and characteristics of the novel aerosol mass spectrometer ERICA (ERC Instrument for Chemical composition of Aerosols; ERC – European Research Council) and selected results from the first airborne field deployment. The instrument combines two well-established methods of real-time in situ measurements of fine particle chemical composition. The first method is the laser desorption and ionization technique, or laser ablation technique, for single-particle mass spectrometry (here with a frequency-quadrupled Nd:YAG laser at λ = 266 nm). The second method is a combination of thermal particle desorption, also called flash vaporization, and electro…

research product

The realization of autonomous, aircraft-based, real-time aerosol mass spectrometry in the upper troposphere and lower stratosphere (dataset)

Dataset accompanying the journal article titled "The realization of autonomous, aircraft-based, real-time aerosol mass spectrometry in the upper troposphere and lower stratosphere". Preprint: doi.org/10.5194/egusphere-2022-33

research product

Chemical analysis of the Asian tropopause aerosol layer (ATAL) with emphasis on secondary aerosol particles using aircraft-based in situ aerosol mass spectrometry

Aircraft-borne in situ measurements of the chemical aerosol composition were conducted in the Asian tropopause aerosol layer (ATAL) over the Indian subcontinent in the summer of 2017, covering particle sizes below ∼3 µm. We have implemented a recently developed aerosol mass spectrometer, which adopts the laser desorption technique as well as the thermal desorption method for quantitative bulk information (i.e., a modified Aerodyne AMS), aboard the high-altitude research aircraft M-55 Geophysica. The instrument was deployed in July and August 2017 during the StratoClim EU campaign (Stratospheric and upper tropospheric processes for better Climate predictions) over Nepal, India, Bangladesh, a…

research product

Application of an O-ring pinch device as a constant-pressure inlet (CPI) for airborne sampling

We present a novel and compact design of a constant-pressure inlet (CPI) developed for use in airborne aerosol mass spectrometry. In particular, the inlet system is optimized for aerodynamic lenses commonly used in aerosol mass spectrometers, in which efficient focusing of aerosol particles into a vacuum chamber requires a precisely controlled lens pressure, typically of a few hectopascals. The CPI device can also be used in condensation particle counters (CPCs), cloud condensation nucleus counters (CCNCs), and gas-phase sampling instruments across a wide range of altitudes and inlet pressures. The constant pressure is achieved by changing the inner diameter of a properly scaled O-ring that…

research product

Chemical analysis of the Asian Tropopause Aerosol Layer (ATAL) with emphasis on secondary aerosol particles using aircraft based in situ aerosol mass spectrometry

Aircraft borne in-situ measurements of the chemical aerosol composition were conducted in the Asian Tropopause Aerosol layer (ATAL) over the Indian subcontinent in summer 2017 covering particle sizes below 3 µm. We have implemented a recently developed aerosol mass spectrometer, which adopts the laser desorption technique as well as the thermal desorption method for quantitative bulk information (i.e. a modified Aerodyne AMS), aboard the high altitude research aircraft M-55 Geophysica. The instrument was deployed in July and August 2017 during the StratoClim EU campaign (Stratospheric and upper tropospheric processes for better climate predictions) over Nepal, India, Bangladesh, and t…

research product

The realization of autonomous, aircraft-based, real-time aerosol mass spectrometry in the upper troposphere and lower stratosphere

We report on the developments that enabled the field deployment of a fully automated aerosol mass spectrometer, especially designed for high-altitude measurements on unpressurized aircraft. The merits of the two main categories of real-time aerosol mass spectrometry, i.e. (a) single-particle laser desorption and ionization and (b) continuous thermal desorption and electron impact ionization of aerosols, have been integrated into one compact apparatus with the aim to perform in situ real-time analysis of aerosol chemical composition. The demonstrated instrument, named the ERICA (European Research Council Instrument for Chemical composition of Aerosols), operated successfully aboard the high-…

research product

Application of an O-ring pinch device as a constant pressure inlet (CPI) for airborne sampling

We present a novel and compact design of a constant pressure inlet (CPI) developed for use in airborne aerosol mass spectrometry. In particular the inlet system is optimized for aerodynamic lenses commonly used in aerosol mass spectrometers, where efficient focusing of aerosol particles into a vacuum chamber requires a precisely controlled lens pressure, typically of a few hPa. The CPI device can also be used in gas phase sampling instruments in a large range of altitude and inlet pressure. The constant pressure is achieved by changing the inner diameter of a properly scaled O-ring that acts as a critical orifice. The CPI control keeps air pressure and thereby mass flow rate (≈&thinsp…

research product

Aircraft-based observation of meteoric material in lower stratospheric aerosol particles between 15 and 68° N

In this paper we analyze aerosol particle composition measurements from five research missions conducted between 2014 and 2018 sampling the upper troposphere and lower stratosphere (UTLS), to assess the meridional extent of particles containing meteoric material. Additional data sets from a ground based study and from a low altitude aircraft mission are used to confirm the existence of meteoric material in lower tropospheric particles. Single particle laser ablation techniques with bipolar ion detection were used to measure the chemical composition of particles in a size range of approximately 150 nm to 3 μm. The five UTLS aircraft missions cover a latitude range from 15 to 68…

research product