0000000000354471

AUTHOR

Sarah A. Sagi

Inhibitors of Rho-kinase modulate amyloid-β (Aβ) secretion but lack selectivity for Aβ42

Certain non-steroidal anti-inflammatory drugs (NSAIDs) preferentially inhibit production of the amyloidogenic Abeta42 peptide, presumably by direct modulation of gamma-secretase activity. A recent report indicated that NSAIDs could reduce Abeta42 by inhibition of the small GTPase Rho, and a single inhibitor of Rho kinase (ROCK) mimicked the effects of Abeta42-lowering NSAIDs. To investigate whether Abeta42 reduction is a common property of ROCK inhibitors, we tested commercially available compounds in cell lines that were previously used to demonstrate the Abeta42-lowering activity of NSAIDs. Surprisingly, we found that two ROCK inhibitors reduced total Abeta secretion in a dose-dependent m…

research product

Diverse compounds mimic Alzheimer disease–causing mutations by augmenting Aβ42 production

Increased Abeta42 production has been linked to the development of Alzheimer disease. We now identify a number of compounds that raise Abeta42. Among the more potent Abeta42-raising agents identified are fenofibrate, an antilipidemic agent, and celecoxib, a COX-2-selective NSAID. Many COX-2-selective NSAIDs tested raised Abeta42, including multiple COX-2-selective derivatives of two Abeta42-lowering NSAIDs. Compounds devoid of COX activity and the endogenous isoprenoids FPP and GGPP also raised Abeta42. These compounds seem to target the gamma-secretase complex, increasing gamma-secretase-catalyzed production of Abeta42 in vitro. Short-term in vivo studies show that two Abeta42-raising comp…

research product