0000000000354482

AUTHOR

Ester Méndez

Whi7 is an unstable cell-cycle repressor of the Start transcriptional program

Start is the main decision point in eukaryotic cell cycle in which cells commit to a new round of cell division. It involves the irreversible activation of a transcriptional program by G1 CDK-cyclin complexes through the inactivation of Start transcriptional repressors, Whi5 in yeast or Rb in mammals. Here we provide novel keys of how Whi7, a protein related at sequence level to Whi5, represses Start. Whi7 is an unstable protein, degraded by the SCFGrr1 ubiquitin-ligase, whose stability is cell cycle regulated by CDK1 phosphorylation. Importantly, Whi7 associates to G1/S gene promoters in late G1 acting as a repressor of SBF-dependent transcription. Our results demonstrate that Whi7 is a ge…

research product

Chimeric proteins tagged with specific 3xHA cassettes may present instability and functional problems

Epitope-tagging of proteins has become a widespread technique for the analysis of protein function, protein interactions and protein localization among others. Tagging of genes by chromosomal integration of PCR amplified cassettes is a widely used and fast method to label proteins in vivo. Different systems have been developed during years in the yeast Saccharomyces cerevisiae. In the present study, we analysed systematically a set of yeast proteins that were fused to different tags. Analysis of the tagged proteins revealed an unexpected general effect on protein level when some specific tagging module was used. This was due in all cases to a destabilization of the proteins and caused a red…

research product

The budding yeast Start repressor Whi7 differs in regulation from Whi5, emerging as a major cell cycle brake in response to stress

ABSTRACT Start is the main decision point in the eukaryotic cell cycle at which cells commit to a new round of cell division. It involves the irreversible activation of a transcriptional programme through the inactivation of Start transcriptional repressors: the retinoblastoma family in mammals, or Whi5 and its recently identified paralogue Whi7 (also known as Srl3) in budding yeast. Here, we provide a comprehensive comparison of Whi5 and Whi7 that reveals significant qualitative differences. Indeed, the expression, subcellular localization and functionality of Whi7 and Whi5 are differentially regulated. Importantly, Whi7 shows specific properties in its association with promoters not share…

research product