0000000000354657

AUTHOR

Borja Belda-palazón

0000-0003-4926-1917

showing 3 related works from this author

Fertility and Polarized Cell Growth Depends on eIF5A for Translation of Polyproline-Rich Formins in Saccharomyces cerevisiae

2014

eIF5A is an essential and evolutionary conserved translation elongation factor, which has recently been proposed to be required for the translation of proteins with consecutive prolines. The binding of eIF5A to ribosomes occurs upon its activation by hypusination, a modification that requires spermidine, an essential factor for mammalian fertility that also promotes yeast mating. We show that in response to pheromone, hypusinated eIF5A is required for shmoo formation, localization of polarisome components, induction of cell fusion proteins, and actin assembly in yeast. We also show that eIF5A is required for the translation of Bni1, a proline-rich formin involved in polarized growth during …

TranslationSaccharomyces cerevisiae ProteinsSaccharomyces cerevisiaePeptide Chain Elongation TranslationalForminsRNA-binding proteinSaccharomyces cerevisiaeInvestigationsPeptide Initiation FactorsMorphogenesisGeneticsQc-SNARE ProteinsPolyproline helixPolarisomeGeneticsMatingbiologyMicrofilament ProteinsMembrane ProteinsRNA-Binding ProteinsTranslation (biology)Polarized growthbiology.organism_classificationActinsProtein Structure TertiaryCell biologyCytoskeletal ProteinsMating of yeastForminsMutationbiology.proteinEIF5APeptidesRibosomesEIF5A
researchProduct

Biochemical quantitation of the eIF5A hypusination in Arabidopsis thaliana uncovers ABA-dependent regulation.

2014

The eukaryotic translation elongation factor eIF5A is the only protein known to contain the unusual amino acid hypusine which is essential for its biological activity. This post-translational modification is achieved by the sequential action of the enzymes deoxyhypusine synthase (DHS) and deoxyhypusine hydroxylase (DOHH). The crucial molecular function of eIF5A during translation has been recently elucidated in yeast and it is expected to be fully conserved in every eukaryotic cell, however the functional description of this pathway in plants is still sparse. The genetic approaches with transgenic plants for either eIF5A overexpression or antisense have revealed some activities related to t…

2D-electrophoresis4SpermidinePlant ScienceBiologylcsh:Plant cultureabscisic acidchemistry.chemical_compoundHypusineAbscisic acidEukaryotic translationabscisic acid5hypusine2spermidineDeoxyhypusine synthaseArabidopsis thalianaeIF5A3lcsh:SB1-1110Original Research ArticleeIF5AHypusine2D-electrophoresisspermidine1Translation (biology)Deoxyhypusine Hydroxylasebiology.organism_classificationhypusineElongation factorBiochemistrychemistrybiology.proteinEIF5AEIF5AFrontiers in plant science
researchProduct

Aminopropyltransferases involved in polyamine biosynthesis localize preferentially in the nucleus of plant cells

2012

Plant aminopropyltransferases consist of a group of enzymes that transfer aminopropyl groups derived from decarboxylated S-adenosyl-methionine (dcAdoMet or dcSAM) to propylamine acceptors to produce polyamines, ubiquitous metabolites with positive charge at physiological pH. Spermidine synthase (SPDS) uses putrescine as amino acceptor to form spermidine, whereas spermine synthase (SPMS) and thermospermine synthase (TSPMS) use spermidine as acceptor to synthesize the isomers spermine and thermospermine respectively. In previous work it was shown that both SPDS1 and SPDS2 can physically interact with SPMS although no data concerning the subcellular localization was reported. Here we study the…

Macromolecular AssembliesProteomicsS-AdenosylmethioninePlant anatomyImmunohistoquímicaArabidopsislcsh:MedicineSecondary MetabolismSpermineExpressionPlant ScienceSpermidine synthaseBiochemistrychemistry.chemical_compoundBimolecular fluorescence complementationCytosolMolecular Cell BiologyPolyaminesPlant Genomicslcsh:SciencePlant Growth and DevelopmentMultidisciplinarybiologyPlant BiochemistryArabidopsis-ThalianaGenomicsImmunohistochemistryMetabolismeFunctional GenomicsBiochemistrySpermine synthasePlant proteinPlant PhysiologyMechanismResearch ArticleHistologyAcyltransferasePlant Cell BiologyActive Transport Cell NucleusSpermidine SynthaseBimolecular fluorescence complementationProtein InteractionsBiologyCell NucleusCrystal-Structurelcsh:RHistologiaBotanyProtein interactionsSubcellular localizationAnatomia vegetalExpressió gènicaMolecular WeightSpermidineMetabolismchemistryDecarboxylasebiology.proteinPutrescineBotànicalcsh:QGene expressionSpermidine synthase
researchProduct