Complex Ground-State and Excitation Energies in Coupled-Cluster Theory
Since in coupled-cluster (CC) theory ground-state and excitation energies are eigenvalues of a non-Hermitian matrix, these energies can in principle take on complex values. In this paper we discuss the appearance of complex energy values in CC calculations from a mathematical perspective. We analyze the behaviour of the eigenvalues of Hermitian matrices that are perturbed (in a non-Hermitian manner) by a real parameter. Based on these results we show that for CC calculations with real-valued Hamiltonian matrices the ground-state energy generally takes a real value. Furthermore, we show that in the case of real-valued Hamiltonian matrices complex excitation energies only occur in the context…