0000000000354731

AUTHOR

Olivier Seynnes

showing 2 related works from this author

Fully automated analysis of muscle architecture from B-mode ultrasound images with deep learning

2020

B-mode ultrasound is commonly used to image musculoskeletal tissues, but one major bottleneck is data interpretation, and analyses of muscle thickness, pennation angle and fascicle length are often still performed manually. In this study we trained deep neural networks (based on U-net) to detect muscle fascicles and aponeuroses using a set of labelled musculoskeletal ultrasound images. We then compared neural network predictions on new, unseen images to those obtained via manual analysis and two existing semi/automated analysis approaches (SMA and Ultratrack). With a GPU, inference time for a single image with the new approach was around 0.7s, compared to 4.6s with a CPU. Our method detects…

FOS: Computer and information sciencesComputer Vision and Pattern Recognition (cs.CV)Image and Video Processing (eess.IV)Computer Science - Computer Vision and Pattern RecognitionFOS: Electrical engineering electronic engineering information engineeringElectrical Engineering and Systems Science - Image and Video Processing
researchProduct

DL_Track : Automated analysis of muscle architecture from B-mode ultrasonography images using deep learning

2023

B-mode ultrasound is commonly used to image musculoskeletal tissues, but one major bottleneck is data analysis. Manual analysis is commonly deployed for assessment of muscle thickness, pennation angle and fascicle length in muscle ultrasonography images. However, manual analysis is somewhat subjective, laborious and requires thorough experience. We provide an openly available algorithm (DL_Track) to automatically analyze muscle architectural parameters in ultrasonography images or videos of human lower limb muscles.
 We trained two different neural networks (classic U-net [Ronneberger et al., 2021] and U-net with VGG16 [Simonyan & Zisserman, 2015] pretrained encoder) one to detect …

ultrasoundconvolutional neural networkultraäänisyväoppiminenlihaksetGeneral MedicineneuroverkotU-netkoneoppiminenkuvantaminenmuscle architectureanalyysialgoritmitultraäänitutkimus
researchProduct