0000000000355117

AUTHOR

Paul A. Janmey

showing 7 related works from this author

Gelation of semiflexible polyelectrolytes by multivalent counterions

2012

Filamentous polyelectrolytes in aqueous solution aggregate into bundles by interactions with multivalent counterions. These effects are well documented by experiment and theory. Theories also predict a gel phase in isotropic rodlike polyelectrolyte solutions caused by multivalent counterion concentrations much lower than those required for filament bundling. We report here the gelation of Pf1 virus, a model semiflexible polyelectrolyte, by the counterions Mg(2+), Mn(2+) and spermine(4+). Gelation can occur at 0.04% Pf1 volume fraction, which is far below the isotropic-nematic transition of 0.7% for Pf1 in monovalent salt. Unlike strongly crosslinked gels of semiflexible polymers, which stif…

inorganic chemicalschemistry.chemical_classificationAqueous solutionChemistrymacromolecular substancesGeneral ChemistryPolymerCondensed Matter PhysicsArticlePolyelectrolyteProtein filamentChemical physicsPolymer chemistryVolume fractionElasticity (economics)CounterionSofteningSoft Matter
researchProduct

Salmon fibrinogen and chitosan scaffold for tissue engineering: in vitro and in vivo evaluation

2018

3D fibrous scaffolds have received much recent attention in regenerative medicine. Use of fibrous scaffolds has shown promising results in tissue engineering and wound healing. Here we report the development and properties of a novel fibrous scaffold that is useful for promoting wound healing. A scaffold made of salmon fibrinogen and chitosan is produced by electrospinning, resulting in a biocompatible material mimicking the structure of the native extracellular matrix (ECM) with suitable biochemical and mechanical properties. The scaffold is produced without the need for enzymes, in particular thrombin, but is fully compatible with their addition if needed. Human dermal fibroblasts culture…

0301 basic medicineScaffoldMaterials scienceSurface PropertiesTissue Engineering Constructs and Cell SubstratesBiomedical EngineeringBiophysicsBiocompatible MaterialsBioengineering02 engineering and technologyRegenerative medicineBiomaterialsChitosanExtracellular matrix03 medical and health scienceschemistry.chemical_compound3D cell cultureThrombinTissue engineeringSalmonmedicineAnimalsHumansCell ProliferationChitosanWound HealingTissue EngineeringTissue Scaffoldsintegumentary systemFibrinogenElectrochemical TechniquesFibroblasts021001 nanoscience & nanotechnologyRats3. Good health030104 developmental biologychemistry0210 nano-technologyWound healingBiomedical engineeringmedicine.drugJournal of Materials Science: Materials in Medicine
researchProduct

Dynamics of Magnetotactic Bacteria in a Rotating Magnetic Field

2007

The dynamics of the motile magnetotactic bacterium Magnetospirillum gryphiswaldense in a rotating magnetic field is investigated experimentally and analyzed by a theoretical model. These elongated bacteria are propelled by single flagella at each bacterial end and contain a magnetic filament formed by a linear assembly of approximately 40 ferromagnetic nanoparticles. The movements of the bacteria in suspension are analyzed by consideration of the orientation of their magnetic dipoles in the field, the hydrodynamic resistance of the bacteria, and the propulsive force of the flagella. Several novel features found in experiments include a velocity reversal during motion in the rotating field a…

Electromagnetic fieldMagnetotactic bacteriaField (physics)MovementBiophysics02 engineering and technology01 natural sciencesModels BiologicalQuantitative Biology::Cell BehaviorProtein filamentQuantitative Biology::Subcellular ProcessesMagneticsElectromagnetic Fields0103 physical sciencesMagnetospirillum010306 general physicsMagnetospirillumPhysicsRotating magnetic fieldPhysics::Biological PhysicsbiologyMagnetic moment021001 nanoscience & nanotechnologybiology.organism_classificationequipment and suppliesClassical mechanicsChemical physicsOther0210 nano-technologyMagnetic dipolehuman activitiesBiophysical Journal
researchProduct

Dynamic Tuning of Viscoelastic Hydrogels with Carbonyl Iron Microparticles Reveals the Rapid Response of Cells to Three-Dimensional Substrate Mechani…

2021

Current methods to dynamically tune three-dimensional hydrogel mechanics require specific chemistries and substrates that make modest, slow, and often irreversible changes to their mechanical properties, exclude the use of protein-based scaffolds, or alter hydrogel microstructure and pore size. Here, we rapidly and reversibly alter the mechanical properties of hydrogels consisting of extracellular matrix proteins and proteoglycans by adding carbonyl iron microparticles (MP) and applying external magnetic fields. This approach drastically alters hydrogel mechanics: rheology reveals that application of a 4,000 Oe magnetic field to a 5 mg/mL collagen hydrogel containing 10 wt% MPs increases th…

Materials science02 engineering and technologyCell morphologyMechanotransduction CellularViscoelasticityArticleExtracellular matrix03 medical and health sciencesMagneticsCarbonyl ironRheologyHumansGeneral Materials ScienceMechanotransductionParticle Sizeskin and connective tissue diseasesCells Cultured030304 developmental biologyCell Nucleus0303 health sciencesExtracellular Matrix ProteinsViscositytechnology industry and agricultureHydrogelsDynamic mechanical analysisMechanics021001 nanoscience & nanotechnologyElasticityExtracellular MatrixSelf-healing hydrogelsCalciumCollagen0210 nano-technologyIron CompoundsACS applied materialsinterfaces
researchProduct

Polyelectrolyte properties of filamentous biopolymers and their consequences in biological fluids.

2014

Anionic polyelectrolyte filaments are common in biological cells. DNA, RNA, the cytoskeletal filaments F-actin, microtubules, and intermediate filaments, and polysaccharides such as hyaluronan that form the pericellular matrix all have large net negative charge densities distributed over their surfaces. Several filamentous viruses with diameters and stiffnesses similar to those of cytoskeletal polymers also have similar negative charge densities. Extracellular protein filaments such collagen, fibrin and elastin, in contrast, have notably smaller charge densities and do not behave as highly charged polyelectrolytes in solution. This review summarizes data that demonstrate generic counterion-…

Bacteriophage Pf1Intermediate Filamentsmacromolecular substancesMatrix (biology)ArticleProtein filamentElectrolytesBiopolymersMicrotubuleVimentinHyaluronic AcidCytoskeletonIntermediate filamentActinCytoskeletonchemistry.chemical_classificationChemistryGeneral ChemistryPolymerDNACondensed Matter PhysicsPolyelectrolyteActinsBody FluidsBiochemistryBiophysicsSoft matter
researchProduct

Electrostatic Contribution to the Surface Pressure of Charged Monolayers Containing Polyphosphoinositides

2008

Structural and functional studies of lateral heterogeneity in biological membranes have underlined the importance of membrane organization in biological function. Most inquiries have focused on steric determinants of membrane organization, such as headgroup size and acyl-chain saturation. This manuscript reports a combination of theory and experiment that shows significant electrostatic contributions to surface pressures in monolayers of phospholipids where the charge spacing is smaller than the Bjerrum length. For molecules with steric cross sections typical of phospholipids in the cell membrane (approximately 50 A(2)), only polyphosphoinositides achieve this threshold. The most abundant s…

Steric effectsModels MolecularMembrane FluiditySurface PropertiesLipid BilayersStatic ElectricityBiophysics010402 general chemistryBjerrum length01 natural sciences03 medical and health sciencesPhosphatidylinositol PhosphatesMonolayerMembrane fluidityPressureComputer SimulationLipid bilayer030304 developmental biology0303 health sciencesChromatographyMembranesHydrogen bondChemistryBiological membrane0104 chemical sciencesModels ChemicalChemical physicsIonic strength
researchProduct

Counterion-mediated attraction and kinks on loops of semiflexible polyelectrolyte bundles.

2006

The formation of kinks in a loop of bundled polyelectrolyte filaments is analyzed in terms of the thermal fluctuations of charge density due to polyvalent counterions adsorbed on the polyelectrolyte filaments. It is found that the counterion-mediated attraction energy of filaments depends on their bending. By consideration of curvature elasticity energy and counterion-mediated attraction between polyelectrolyte filaments, the characteristic width of the kink and the number of kinks per loop is found to be in reasonable agreement with existing experimental data for rings of bundled actin filaments.

chemistry.chemical_classificationQuantitative Biology::BiomoleculesMaterials scienceCondensed matter physicsMolecular ConformationGeneral Physics and AstronomyThermal fluctuationsCharge densityBendingCurvatureAttractionPolyelectrolyteActinsQuantitative Biology::Cell BehaviorQuantitative Biology::Subcellular ProcessesCondensed Matter::Soft Condensed MatterActin CytoskeletonElectrolyteschemistryModels ChemicalChemical physicsThermodynamicsCounterionElasticity (economics)Physical review letters
researchProduct