0000000000355471

AUTHOR

Yinan Hu

Battery Diagnostics with Sensitive Magnetometry

The ever-increasing demand for high-capacity rechargeable batteries highlights the need for sensitive and accurate diagnostic technology for determining the state of a cell, for identifying and localizing defects, or for sensing capacity loss mechanisms. Here, we demonstrate the use of atomic magnetometry to map the weak induced magnetic fields around a Li-ion battery cell as a function of state of charge and upon introducing mechanical defects. These measurements provide maps of the magnetic susceptibility of the cell, which follow trends characteristic for the battery materials under study upon discharge. In addition, the measurements reveal hitherto unknown long time-scale transient inte…

research product

Photochemically induced dynamic nuclear polarization of heteronuclear singlet order

Photochemically induced dynamic nuclear polarization (photo-CIDNP) is a method to hyperpolarize nuclear spins using light. In most cases, CIDNP experiments are performed in high magnetic fields and the sample is irradiated by light inside a nuclear magnetic resonance (NMR) spectrometer. Here we demonstrate photo-CIDNP hyperpolarization generated in the Earth's magnetic field and under zero- to ultralow-field (ZULF) conditions. Irradiating a sample containing tetraphenylporphyrin and para-benzoquinone for several seconds with light-emitting diodes produces strong hyperpolarization of 1H and 13C nuclear spins, enhancing the NMR signals more than 200 times. The hyperpolarized spin states at th…

research product

Battery characterization via eddy-current imaging with nitrogen-vacancy centers in diamond

Sensitive and accurate diagnostic technologies with magnetic sensors are of great importance for identifying and localizing defects of rechargeable solid batteries in a noninvasive detection. We demonstrate a microwave-free AC magnetometry method with negatively charged NV centers in diamond based on a cross-relaxation feature between NV centers and individual substitutional nitrogen (P1) centers occurring at 51.2 mT. We apply the technique to non-destructive solid-state battery imaging. By detecting the eddy-current-induced magnetic field of the battery, we distinguish a defect on the external electrode and identify structural anomalies within the battery body. The achieved spatial resolut…

research product

Zero- to Ultralow-Field Nuclear Magnetic Resonance $J$-Spectroscopy with Commercial Atomic Magnetometers

Zero- to ultralow-field nuclear magnetic resonance (ZULF NMR) is an alternative spectroscopic method to high-field NMR, in which samples are studied in the absence of a large magnetic field. Unfortunately, there is a large barrier to entry for many groups, because operating the optical magnetometers needed for signal detection requires some expertise in atomic physics and optics. Commercially available magnetometers offer a solution to this problem. Here we describe a simple ZULF NMR configuration employing commercial magnetometers, and demonstrate sufficient functionality to measure samples with nuclear spins prepolarized in a permanent magnet or initialized using parahydrogen. This opens …

research product

Sensitive magnetometry reveals inhomogeneities in charge storage and weak transient internal currents in Li-ion cells

The ever-increasing demand for high-capacity rechargeable batteries highlights the need for sensitive and accurate diagnostic technology for determining the state of a cell, for identifying and localizing defects, and for sensing capacity loss mechanisms. Here, we leverage atomic magnetometry to map the weak induced magnetic fields around Li-ion battery cells in a magnetically shielded environment. The ability to rapidly measure cells nondestructively allows testing even commercial cells in their actual operating conditions, as a function of state of charge. These measurements provide maps of the magnetic susceptibility of the cell, which follow trends characteristic for the battery materia…

research product

Rapid online solid-state battery diagnostics with optically pumped magnetometers

Applied Sciences 10(21), 7864 (2020). doi:10.3390/app10217864

research product