0000000000357954

AUTHOR

N. Kalantarians

Precise Measurement of the Neutron Magnetic Form FactorGMnin the Few-GeV2Region

The neutron elastic magnetic form factor was extracted from quasielastic electron scattering on deuterium over the range Q;{2}=1.0-4.8 GeV2 with the CLAS detector at Jefferson Lab. High precision was achieved with a ratio technique and a simultaneous in situ calibration of the neutron detection efficiency. Neutrons were detected with electromagnetic calorimeters and time-of-flight scintillators at two beam energies. The dipole parametrization gives a good description of the data.

research product

Technical Design Report for the Paul Scherrer Institute Experiment R-12-01.1: Studying the Proton "Radius" Puzzle with $\mu p$ Elastic Scattering

The difference in proton radii measured with $\mu p$ atoms and with $ep$ atoms and scattering remains an unexplained puzzle. The PSI MUSE proposal is to measure $\mu p$ and $e p$ scattering in the same experiment at the same time. The experiment will determine cross sections, two-photon effects, form factors, and radii independently for the two reactions, and will allow $\mu p$ and $ep$ results to be compared with reduced systematic uncertainties. These data should provide the best test of lepton universality in a scattering experiment to date, about an order of magnitude improvement over previous tests. Measuring scattering with both particle polarities will allow a test of two-photon exch…

research product

Dark Sectors and New, Light, Weakly-Coupled Particles

Dark sectors, consisting of new, light, weakly-coupled particles that do not interact with the known strong, weak, or electromagnetic forces, are a particularly compelling possibility for new physics. Nature may contain numerous dark sectors, each with their own beautiful structure, distinct particles, and forces. This review summarizes the physics motivation for dark sectors and the exciting opportunities for experimental exploration. It is the summary of the Intensity Frontier subgroup "New, Light, Weakly-coupled Particles" of the Community Summer Study 2013 (Snowmass). We discuss axions, which solve the strong CP problem and are an excellent dark matter candidate, and their generalizatio…

research product

Experiments with the High Resolution Kaon Spectrometer at JLab Hall C and the new spectroscopy ofΛ12Bhypernuclei

Since the pioneering experiment E89-009 studying hypernuclear spectroscopy using the (e, e’K+) reaction was completed, two additional experiments, E01-011 and E05-115, were performed at Jefferson Lab. These later experiments used a modified experimental design, the "tilt method", to dramatically suppress the large electromagnetic background, and allowed for a substantial increase in luminosity. Additionally, a new kaon spectrometer, HKS (E01-011), a new electron spectrometer, HES, and a new splitting magnet (E05-115) were added to produce new data sets of precision, high-resolution hypernuclear spectroscopy. All three experiments obtained a spectrum for 12B-Lambda, which is the most charact…

research product