0000000000358705
AUTHOR
F. De Giovanni
Rank formulae for factorized groups
The following inequalities for the torsion-free rank r0(G) of the group G=AB and for the p∞-rank rp(G) of the soluble-by-finite group G=AB are stated: $$\begin{gathered} r_0 (G) \leqslant r_0 (A) + r_0 (B) - r_0 (A \cap B), \hfill \\ r_p (G) \leqslant r_p (A) + r_p (B) - r_p (A \cap B). \hfill \\ \end{gathered} $$
Groups whose subgroups satisfy the weak subnormalizer condition
A subgroup X of a group G is said to satisfy the weak subnormalizer condition if $$N_G(Y)\le N_G(X)$$ for each non-normal subgroup Y of G such that $$X\le Y\le N_G(X)$$ . The behaviour of generalized soluble groups whose (cyclic) subgroups satisfy the weak subnormalizer condition is investigated.