0000000000359013

AUTHOR

Leopoldo Lopez-escobar

The Nevados de Payachata volcanic region (18�S/69�W, N. Chile) II. Evidence for widespread crustal involvement in Andean magmatism

Volcanism extending over 11 Ma is represented in the rocks of the Nevados de Payachata region, culminating in the formation of two large composite stratocones within the last 500 000 years. Chemically distinct mafic magmas are erupted at a number of parasitic centers. These cannot be related to each other by crystal fractionation and do not appear to be direct parents for the differentiated suites of the composite cones. Two distinct trends are defined by the intermediate and evolved rocks; a high LILE (large ion lithophile element), TiO2 and Ce/Yb lineage among the youngest rocks (including the two major stratocones), and a more typical calc-alkaline trend among the older (>1 Ma) rock type…

research product

Large- and Fine-Scale Geochemical Variations Along the Andean Arc of Northern Chile (17.5°– 22°S)

Geochemical data from 37 volcanic centres from the active volcanic front in the Central Andes between 17.5° and 22°S of northern Chile provide constraints on crustal contributions to arc magma genesis in that region. Crustal thickness, distance from the trench, height above the seismically active subduction zone, and sediment supply to the trench are all constant along this segment of the arc. The only significant variable along the current arc segment is in mean crustal age (Palaeozoic in the south to Proterozoic in the north). In addition, the crustal thickness has varied through time from around 40 km in the Lower Miocene to about 70 km today. Variations along the N-S chain of the volcan…

research product

Influence of crustal thickening on arc magmatism:, Nevados de Payachata volcanic region, northern Chile

Neogene through Pleistocene lava flows of the Nevados de Payachata region (lat 18°S) on the Altiplano of northern Chile fall into two discrete chemical groups defined by age and incompatible element concentrations. The Neogene suite (10.5-6.6 Ma) has trace element concentrations comparable to arc magmas erupted on thin crust in central Chile. Pleistocene lava flows (0.29-0 Ma) are enriched in incompatible elements relative to Neogene samples but have similar Sr, Nd, and Pb isotopic ratios. Incompatible element enrichment in mafic rocks reflects deep-crustal or subcrustal processes. Neogene volcanism in northern Chile immediately followed a period of intense crustal thickening. Uplift rates …

research product