Minimax estimation with additional linear restrictions - a simulation study
Let the parameter vector of the ordinary regression model be constrained by linear equations and in addition known to lie in a given ellipsoid. Provided the weight matrix A of the risk function has rank one, a restricted minimax estimator exists which combines both types of prior information. For general n.n.d. A two estimators as alternatives to the unfeasible exact minimax estimator are developed by minimizing an upper and a lower bound of the maximal risk instead. The simulation study compares the proposed estimators with competing least-squares estimators where remaining unknown parameters are replaced by suitable estimates.