0000000000359055

AUTHOR

Ioannis A. Kougioumtzoglou

showing 8 related works from this author

Higher order matrix differential equations with singular coefficient matrices

2015

In this article, the class of higher order linear matrix differential equations with constant coefficient matrices and stochastic process terms is studied. The coefficient of the highest order is considered to be singular; thus, rendering the response determination of such systems in a straightforward manner a difficult task. In this regard, the notion of the generalized inverse of a singular matrix is used for determining response statistics. Further, an application relevant to engineering dynamics problems is included.

Stochastic partial differential equationMatrix (mathematics)Constant coefficientsSingular solutionComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATIONMathematical analysisMathematicsofComputing_NUMERICALANALYSISMatrix analysisCoefficient matrixDifferential algebraic equationMatrix multiplicationMathematicsAIP Conference Proceedings
researchProduct

An Efficient Wiener Path Integral Technique Formulation for Stochastic Response Determination of Nonlinear MDOF Systems

2015

The recently developed approximate Wiener path integral (WPI) technique for determining the stochastic response of nonlinear/hysteretic multi-degree-of-freedom (MDOF) systems has proven to be reliable and significantly more efficient than a Monte Carlo simulation (MCS) treatment of the problem for low-dimensional systems. Nevertheless, the standard implementation of the WPI technique can be computationally cumbersome for relatively high-dimensional MDOF systems. In this paper, a novel WPI technique formulation/implementation is developed by combining the “localization” capabilities of the WPI solution framework with an appropriately chosen expansion for approximating the system response PDF…

Mechanical EngineeringReliability (computer networking)Monte Carlo methodnonlinear systemCondensed Matter PhysicsDisplacement (vector)Nonlinear systemStochastic dynamicsOrders of magnitude (time)Variational formulationMechanics of MaterialsControl theorystochastic dynamicPath integral formulationBoundary value problemWiener path integralMathematics
researchProduct

Stochastic response determination of nonlinear oscillators with fractional derivatives elements via the Wiener path integral

2014

A novel approximate analytical technique for determining the non-stationary response probability density function (PDF) of randomly excited linear and nonlinear oscillators endowed with fractional derivatives elements is developed. Specifically, the concept of the Wiener path integral in conjunction with a variational formulation is utilized to derive an approximate closed form solution for the system response non-stationary PDF. Notably, the determination of the non-stationary response PDF is accomplished without the need to advance the solution in short time steps as it is required by the existing alternative numerical path integral solution schemes which rely on a discrete version of the…

Euler-Lagrange equationMechanical EngineeringMonte Carlo methodMathematical analysisAerospace EngineeringOcean EngineeringStatistical and Nonlinear PhysicsProbability density functionFractional derivativeCondensed Matter PhysicsFractional calculusEuler–Lagrange equationNonlinear systemNuclear Energy and EngineeringPath integral formulationNonlinear systemWiener Path IntegralStochastic dynamicFunctional integrationFractional variational problemFractional quantum mechanicsCivil and Structural EngineeringMathematicsProbabilistic Engineering Mechanics
researchProduct

Implicit analytic solutions for a nonlinear fractional partial differential beam equation

2020

Abstract Analytic solutions in implicit form are derived for a nonlinear partial differential equation (PDE) with fractional derivative elements, which can model the dynamics of a deterministically excited Euler-Bernoulli beam resting on a viscoelastic foundation. Specifically, the initial-boundary value problem for the corresponding PDE is reduced to an initial value problem for a nonlinear ordinary differential equation in a Hilbert space. Next, by employing the cosine and sine families of operators, a variation of parameters representation of the solution map is introduced. Due to the presence of a nonlinear term, a local fixed point theorem is employed to prove the local existence and u…

Numerical AnalysisPartial differential equationApplied MathematicsCosine and sine families of operatorHilbert spacePartial differential equationFractional derivativeVariation of parameters01 natural sciencesImplicit analytic solution010305 fluids & plasmasFractional calculusNonlinear systemsymbols.namesakeModeling and Simulation0103 physical sciencessymbolsPartial derivativeInitial value problemApplied mathematicsBoundary value problem010306 general physicsMathematicsNonlinear beam
researchProduct

Response determination of linear dynamical systems with singular matrices: A polynomial matrix theory approach

2017

Abstract An approach is developed based on polynomial matrix theory for formulating the equations of motion and for determining the response of multi-degree-of-freedom (MDOF) linear dynamical systems with singular matrices and subject to linear constraints. This system modeling may appear for reasons such as utilizing redundant DOFs, and can be advantageous from a computational cost perspective, especially for complex (multi-body) systems. The herein developed approach can be construed as an alternative to the recently proposed methodology by Udwadia and coworkers, and has the significant advantage that it circumvents the use of pseudoinverses in determining the system response. In fact, ba…

Multibody system0209 industrial biotechnologyMathematical optimizationPolynomialApplied Mathematics02 engineering and technologyLinear constrained structural/mechanical systemPolynomial matrix theoryMatrix multiplicationPolynomial matrixMatrix polynomialLinear dynamical systemMatrix (mathematics)020303 mechanical engineering & transports020901 industrial engineering & automation0203 mechanical engineeringMatrix splittingModeling and SimulationApplied mathematicsMatrix analysisClosed form solutionSingular matrixMathematics
researchProduct

Stochastic response determination of structural systems modeled via dependent coordinates: a frequency domain treatment based on generalized modal an…

2019

Generalized independent coordinates are typically utilized within an analytical dynamics framework to model the motion of structural and mechanical engineering systems. Nevertheless, for complex systems, such as multi-body structures, an explicit formulation of the equations of motion by utilizing generalized, independent, coordinates can be a daunting task. In this regard, employing a set of redundant coordinates can facilitate the formulation of the governing dynamics equations. In this setting, however, standard response analysis techniques cannot be applied in a straightforward manner. For instance, defining and determining a transfer function within a frequency domain response analysis…

Dynamical systems theoryComputer scienceMechanical EngineeringModal analysisEquations of motion02 engineering and technologyCondensed Matter Physics01 natural sciencesTransfer functionAnalytical dynamicsTransfer function matrixMatrix (mathematics)Power spectral density matrix020303 mechanical engineering & transports0203 mechanical engineeringMechanics of MaterialsFrequency domain0103 physical sciencesAnalytical dynamicApplied mathematicsRandom vibration010301 acousticsSingular matrix
researchProduct

Random vibration of linear and nonlinear structural systems with singular matrices: A frequency domain approach

2017

Abstract A frequency domain methodology is developed for stochastic response determination of multi-degree-of-freedom (MDOF) linear and nonlinear structural systems with singular matrices. This system modeling can arise when a greater than the minimum number of coordinates/DOFs is utilized, and can be advantageous, for instance, in cases of complex multibody systems where the explicit formulation of the equations of motion can be a nontrivial task. In such cases, the introduction of additional/redundant DOFs can facilitate the formulation of the equations of motion in a less labor intensive manner. Specifically, relying on the generalized matrix inverse theory, a Moore-Penrose (M-P) based f…

Frequency responseAcoustics and Ultrasonics02 engineering and technologyCondensed Matter PhysicAcoustics and Ultrasonic01 natural sciences0203 mechanical engineering0103 physical sciencesStochastic dynamicMechanics of Material010301 acousticsMoore–Penrose pseudoinverseMathematicsCovariance matrixMechanical EngineeringMathematical analysisLinear systemEquations of motionCondensed Matter PhysicsMoore-Penrose inverseFrequency domainNonlinear systemFrequency domain; Moore-Penrose inverse; Random vibration; Singular matrix; Stochastic dynamics; Condensed Matter Physics; Mechanics of Materials; Acoustics and Ultrasonics; Mechanical Engineering020303 mechanical engineering & transportsMechanics of MaterialsFrequency domainRandom vibrationSingular matrixRandom vibration
researchProduct

Deterministic and Random Vibration of Linear Systems with Singular Parameter Matrices and Fractional Derivative Terms

2021

Both time- and frequency-domain solution techniques are developed for determining the response of linear multi-degree-of-freedom systems exhibiting singular parameter matrices and endowed with derivative terms of noninteger orders modeled as rational numbers. This is done based on the Moore-Penrose matrix inverse theory, in conjunction with a state variable formulation and with a complex modal analysis treatment. It is worth noting that, for the class of systems considered herein, this treatment also yields decoupled governing equations, thus facilitating further their numerical solution. Next, a generalization of the standard frequency-domain input-output (excitation-response) relationship…

Engineering dynamics Fractional derivative Moore-Penrose inverse Singular matrixMechanics of MaterialsMechanical EngineeringSingular matrixLinear systemApplied mathematicsRandom vibrationSettore ICAR/08 - Scienza Delle CostruzioniMoore–Penrose pseudoinverseMathematicsFractional calculusJournal of Engineering Mechanics
researchProduct