0000000000359281

AUTHOR

Marina I. Santos

showing 4 related works from this author

Endothelial cell colonization and angiogenic potential of combined nano- and micro-fibrous scaffolds for bone tissue engineering

2008

Presently the majority of tissue engineering approaches aimed at regenerating bone relies only on postimplantation vascularization. Strategies that include seeding endothelial cells (ECs) on biomaterials and promoting their adhesion, migration and functionality might be a solution for the formation of vascularized bone. Nano/micro-fiber-combined scaffolds have an innovative structure, inspired by extracellular matrix (ECM) that combines a nano-network, aimed to promote cell adhesion, with a micro-fiber mesh that provides the mechanical support. In this work we addressed the influence of this nano-network on growth pattern, morphology, inflammatory expression profile, expression of structura…

ScaffoldMaterials scienceEndothelial cellsMaterials ScienceBiophysicsNeovascularization PhysiologicNano-fibersBioengineering02 engineering and technologyStarch-based scaffoldsCell morphologyBone and BonesBone tissue engineeringBiomaterialsExtracellular matrix03 medical and health sciencesEngineeringMicroscopy Electron TransmissionTissue engineeringHumansVimentinBone regenerationCell adhesionCells Cultured030304 developmental biologyInflammation0303 health sciencesScience & TechnologyTissue EngineeringVascularizationtechnology industry and agriculture021001 nanoscience & nanotechnologyNanostructuresCell biologyPlatelet Endothelial Cell Adhesion Molecule-1Endothelial stem cellGene Expression RegulationMechanics of MaterialsNanofiberMicroscopy Electron ScanningCeramics and Composites0210 nano-technologyBiomedical engineeringBiomaterials
researchProduct

Crosstalk between osteoblasts and endothelial cells co-cultured on a polycaprolactone-starch scaffold and the in vitro development of vascularization.

2009

The reconstruction of bone defects based on cell-seeded constructs requires a functional microvasculature that meets the metabolic demands of the engineered tissue. Therefore, strategies that augment neovascularization need to be identified. We propose an in vitro strategy consisting of the simultaneous culture of osteoblasts and endothelial cells on a starch-based scaffold for the formation of pre-vascular structures, with the final aim of accelerating the establishment of a vascular bed in the implanted construct. Human dermal microvascular endothelial cells (HDMECs) were co-cultured with human osteoblasts (hOBs) on a 3D starch-based scaffold and after 21 days of culture HDMEC aligned and…

MaleVascular Endothelial Growth Factor ACell typeScaffoldMaterials sciencePolyestersBiophysicsConnexinNeovascularization PhysiologicBioengineering02 engineering and technologyBiomaterialsNeovascularizationDiffusion03 medical and health sciencesType IV collagenTissue engineeringOsteogenesismedicineHumansTissue engineeringBonePolymer030304 developmental biology0303 health sciencesScience & TechnologyOsteoblastsTissue ScaffoldsVascularizationEndothelial CellsStarch021001 nanoscience & nanotechnologyImmunohistochemistryCoculture TechniquesCell biologyCrosstalk (biology)Mechanics of MaterialsCeramics and Compositesmedicine.symptomCo-culture0210 nano-technologyType I collagenBiomedical engineeringBiomaterials
researchProduct

Analysis of the Biological Response of Endothelial and Fibroblast Cells Cultured on Synthetic Scaffolds with Various Hydrophilic/Hydrophobic Ratios: …

2009

In this study we developed polymer scaffolds intended as anchorage rings for cornea prostheses among other applications, and examined their cell compatibility. In particular, a series of interconnected porous polymer scaffolds with pore sizes from 80 to 110 microns were manufactured varying the ratio of hydrophobic to hydrophilic monomeric units along the polymer chains. Further, the effects of fibronectin precoating, a physiological adhesion molecule, were tested. The interactions between the normal human fibroblast cell line MRC-5 and primary human umbilical vein endothelial cells (HUVECs) with the scaffold surfaces were evaluated. Adhesion and growth of the cells was examined by confocal…

Umbilical VeinsPolymersProtein ConformationSurface PropertiesCellBiomedical EngineeringBioengineering02 engineering and technology010402 general chemistry01 natural sciencesBiochemistryProinflammatory cytokineBiomaterialsCell AdhesionmedicineHumansCell adhesionFibroblastCells CulturedCell ProliferationTissue ScaffoldsbiologyChemistryCell growthEndothelial CellsFibroblasts021001 nanoscience & nanotechnologyFibronectins0104 chemical sciencesPlatelet Endothelial Cell Adhesion Molecule-1Endothelial stem cellFibronectinmedicine.anatomical_structureGene Expression RegulationMicroscopy Electron ScanningBiophysicsbiology.proteinAdsorptionE-Selectin0210 nano-technologyHydrophobic and Hydrophilic InteractionsIntracellularTissue Engineering Part A
researchProduct

Response of micro- and macrovascular endothelial cells to starch-based fiber meshes for bone tissue engineering.

2006

The establishment of a functional vasculature is as yet an unrealized milestone in bone reconstruction therapy. For this study, fiber-mesh scaffolds obtained from a blend of starch and poly(caprolactone) (SPCL), that have previously been shown to be an excellent material for the proliferation and differentiation of bone marrow cells and thereby represent great potential as constructs for bone regeneration, were examined for endothelial cell (EC) compatibility. To be successfully applied in vivo, this tissue engineered construct should also be able to support the growth of ECs in order to facilitate vascularization and therefore assure the viability of the construct upon implantation. The ma…

ScaffoldMaterials scienceCellular differentiationEndothelial cellsBiophysicsNeovascularization PhysiologicBioengineering02 engineering and technologyComplex MixturesStarch-based scaffoldsCell junctionBone and BonesBone tissue engineeringBiomaterials03 medical and health sciencesmedicineBone regenerationCells Cultured030304 developmental biology0303 health sciencesScience & TechnologyTissue EngineeringCell adhesion moleculeVascularizationCell DifferentiationStarch021001 nanoscience & nanotechnologyCell biologyEndothelial stem cellmedicine.anatomical_structureMechanics of MaterialsCell cultureCeramics and CompositesBone marrowEndothelium Vascular0210 nano-technologyBiomedical engineeringBiomaterials
researchProduct