0000000000359634
AUTHOR
Alessandro Prigione
Gatekeeper of pluripotency: A common Oct4 transcriptional network operates in mouse eggs and embryonic stem cells
Abstract Background Oct4 is a key factor of an expanded transcriptional network (Oct4-TN) that governs pluripotency and self-renewal in embryonic stem cells (ESCs) and in the inner cell mass from which ESCs are derived. A pending question is whether the establishment of the Oct4-TN initiates during oogenesis or after fertilisation. To this regard, recent evidence has shown that Oct4 controls a poorly known Oct4-TN central to the acquisition of the mouse egg developmental competence. The aim of this study was to investigate the identity and extension of this maternal Oct4-TN, as much as whether its presence is circumscribed to the egg or maintained beyond fertilisation. Results By comparing …
Nuclear inclusions of pathogenic ataxin-1 induce oxidative stress and perturb the protein synthesis machinery
Spinocerebellar ataxia type-1 (SCA1) is caused by an abnormally expanded polyglutamine (polyQ) tract in ataxin-1. These expansions are responsible for protein misfolding and self-assembly into intranuclear inclusion bodies (IIBs) that are somehow linked to neuronal death. However, owing to lack of a suitable cellular model, the downstream consequences of IIB formation are yet to be resolved. Here, we describe a nuclear protein aggregation model of pathogenic human ataxin-1 and characterize IIB effects. Using an inducible Sleeping Beauty transposon system, we overexpressed the ATXN1(Q82) gene in human mesenchymal stem cells that are resistant to the early cytotoxic effects caused by the expr…