0000000000359692

AUTHOR

Nuria Aleixos

In-line Sorting of Processed Fruit Using Computer Vision

Nowadays, there is a growing demand for quality fruits and vegetables that are simple to prepare and consume, like minimally processed fruits. These products have to accomplish some particular characteristics to make them more attractive to the consumers, like a similar appearance and the total absence of external defects. Although recent advances in machine vision have allowed for the automatic inspection of fresh fruit and vegetables, there are no commercially available equipments for sorting of minority processed fruits, like arils of pomegranate (Punica granatum L) or segments of Satsuma mandarin (Citrus unshiu) ready to eat. This work describes a complete solution based on machine visi…

research product

Detection of Invisible Damages in ‘Rojo Brillante’ Persimmon Fruit at Different Stages Using Hyperspectral Imaging and Chemometrics

[EN] The main cause of flesh browning in 'Rojo Brillante' persimmon fruit is mechanical damage caused during harvesting and packing. Innovation and research on nondestructive techniques to detect this phenomenon in the packing lines are necessary because this type of alteration is often only seen when the final consumer peels the fruit. In this work, we have studied the application of hyperspectral imaging in the range of 450-1040 nm to detect mechanical damage without any external symptoms. The fruit was damaged in a controlled manner. Later, images were acquired before and at 0, 1, 2 and 3 days after damage induction. First, the spectral data captured from the images were analysed through…

research product

Hyperspectral LCTF-based system for classification of decay in mandarins caused by Penicillium digitatum and Penicillium italicum using the most relevant bands and non-linear classifiers

[EN] Green mold (Penicillium digitatum) and blue mold (Penicillium italicum) are important sources of postharvest decay affecting the commercialization of mandarins. These fungi infections produce enormous economic losses in mandarin production if early detection is not carried out. Nowadays, this detection is performed manually in dark chambers, where the fruit is illuminated by ultraviolet light to produce fluorescence, which is potentially dangerous for humans. This paper documents a new methodology based on hyperspectral imaging and advanced machine-learning techniques (artificial neural networks and classification and regression trees) for the segmentation and classification of images …

research product

Segmentation of Hyperspectral Images for the Detection of Rotten Mandarins

The detection of rotten citrus in packing lines is carried out manually under ultraviolet illumination, which is dangerous for workers. Light emitted by the rotten region of the fruit due to the ultraviolet-induced fluorescence is used by the operator to detect the damages. This procedure is required because the low contrast between the damaged and sound skin under visible illumination difficult their detection. We study a set of techniques aimed to detect rottenness in citrususing visible and near infrared lighting trough an hyperspectral imaging system. Methods for selecting a proper set of wavelengths are investigated such as correlation analysis, mutual information, stepwise or genetic …

research product

Discrimination of common defects in loquat fruit cv. ‘Algerie’ using hyperspectral imaging and machine learning techniques

Abstract Loquat (Eriobotrya japonica L.) is an important fruit for the economy of some regions of Spain that is very susceptible to mechanical damage and physiological disorders. These problems depreciate its value and prevent it from being exported. Visible (VIS) and near infrared (NIR) hyperspectral imaging was used to discriminate between external and internal common defects of loquat cv. ‘Algerie’. Two classifiers, random forest (RF) and extreme gradient boost (XGBoost), and different spectral pre-processing techniques were evaluated in terms of their capacity to distinguish between sound and defective features according to three approaches. In the first approach the fruit pixels were c…

research product

Recognition and classification of external skin damage in citrus fruits using multispectral data and morphological features

The computer vision systems currently used for the automatic inspection of citrus fruits are normally based on supervised methods that are capable of detecting defects on the surface of the fruit but are unable to discriminate between different types of defects. identifying the type of the defect affecting each fruit is very important in order to optimise the marketing profit and to be able to take measures to prevent such defects from occurring in the future. In this paper, we present a computer vision system that was developed for the recognition and classification of the most common external defects in citrus. in order to discriminate between 11 types of defects, images of the defects we…

research product

A Survey of Bayesian Techniques in Computer Vision

The Bayesian approach to classification is intended to solve questions concerning how to assign a class to an observed pattern using probability estimations. Red, green and blue (RGB) or hue, saturation and lightness (HSL) values of pixels in digital colour images can be considered as feature vectors to be classified, thus leading to Bayesian colour image segmentation. Bayesian classifiers are also used to sort objects but, in this case, reduction of the dimensionality of the feature vector is often required prior to the analysis. This chapter shows some applications of Bayesian learning techniques in computer vision in the agriculture and agri-food sectors. Inspection and classification of…

research product

Application of near Infrared Spectroscopy to the Quality Control of Citrus Fruits and Mango

NIR spectroscopy is a proved tool to measure the optical properties of the samples, which are related to their chemical and textural properties. This technology can be used for determining the internal and external quality of fruits. Accordingly, many studies have been reported for long time to assess the quality of different fresh fruits by using reflectance measurements acquired with visible-NIR spectroscopy. We have been working on the estimation of the quality of fruits using computer vision for more than twenty years, always focused on problems that affect the local industry. As the region of Valencia (Spain) is one of the main producers and exporters of citrus fruits worldwide, most o…

research product

Discrimination of astringent and deastringed hard ‘Rojo Brillante’ persimmon fruit using a sensory threshold by means of hyperspectral imaging

[EN] Persimmon fruit cv. 'Rojo Brillante' is an astringent cultivar due to its content of soluble tannins, which are insolubilised during the ripening of the fruit. Traditionally, the consumption of this cultivar has only been possible when the fruit is overripe and the texture is soft. Postharvest treatments based on exposing fruits to high CO2 concentrations allow astringency removal while preserving high flesh firmness. However, the effectiveness of this treatment is controlled by means of slow destructive methods. The aim of this work is to study the application of hyperspectral imaging in the spectral range 450-1040 nm to discriminate astringent (A) and deastringed (DA) fruits non-dest…

research product

Hyperspectral system for early detection of rottenness caused by Penicillium digitatum in mandarins

Abstract Nowadays, the detection of fruit infected with Penicillium sp. fungi on packing lines is carried out manually under ultraviolet illumination. Ultraviolet sources induce visible fluorescence of essential oils, present in the skin of citrus and which are released by the action of fungi, thus increasing the contrast between sound and rotten skin. This work analyses a set of techniques aimed at detecting rotten citrus without the use of UV lighting. The techniques used include hyperspectral image acquisition, pre-processing and calibration, feature selection and segmentation using linear and non-linear methods for classification of fruits. Different methods such as correlation analysis…

research product

Automatic correction of the effects of the light source on spherical objects. An application to the analysis of hyperspectral images of citrus fruits

This study proposes a method for correcting the adverse effects produced by the curvature of spherical objects in acquiring images with a computer vision system. Its suitability has been illustrated in a specific case of citrus fruits. The images of this kind of fruit are darker in areas nearer the edge than in the centre, and this makes them more difficult to analyse. This methodology considers the fruit as being a Lambertian ellipsoidal surface and produces a 3D model of the fruit. By doing it becomes possible to calculate the part of the radiation that should really reach the camera and to make the intensity of the radiation uniform over the whole of the fruit surface captured by the cam…

research product