Conductive polycaprolactone/gelatin/polyaniline nanofibres as functional scaffolds for cardiac tissue regeneration
Abstract The endorsement of functional features such as biocompatibility, mechanical integrity, or electrical conductivity to tissue engineering (TE) scaffolds is essential to stimulate cell adhesion and proliferation. In this study, electrospun nanofibers based on polycaprolactone (PCL) and gelatin (Ge) (ratios 60/40, 50/50, and 40/60), and polyaniline (PAni) particles (0.25, 0.50, and 1.00%wt) were prepared. The time of dissolution in an acid solvent mixture before electrospinning allowed for obtaining nanofibers with controlled features. Changes in the molar mass (Mn from 90·103 to 15·103 g·mol−1), in the crystalline microstructure (Xc from 60 to 25%) and the surface morphology (diameter…