0000000000361413

AUTHOR

George M. Tzoumas

Data structures and algorithms for topological analysis

International audience; One of the steps of geometric modeling is to know the topology and/or the geometry of the objects considered. This paper presents different data structures and algorithms used in this study. We are particularly interested by algebraic structures, eg homotopy and homology groups, the Betti numbers, the Euler characteristic, or the Morse-Smale complex. We have to be able to compute these data structures, and for (homotopy and homology) groups, we also want to compute their generators. We are also interested in algorithms CIA and HIA presented in the thesis of Nicolas DELANOUE, which respectively compute the connected components and the homotopy type of a set defined by…

research product

Extending CSG with projections: Towards formally certified geometric modeling

We extend traditional Constructive Solid Geometry (CSG) trees to support the projection operator. Existing algorithms in the literature prove various topological properties of CSG sets. Our extension readily allows these algorithms to work on a greater variety of sets, in particular parametric sets, which are extensively used in CAD/CAM systems. Constructive Solid Geometry allows for algebraic representation which makes it easy for certification tools to apply. A geometric primitive may be defined in terms of a characteristic function, which can be seen as the zero-set of a corresponding system along with inequality constraints. To handle projections, we exploit the Disjunctive Normal Form,…

research product

Exact Voronoi diagram of smooth convex pseudo-circles: General predicates, and implementation for ellipses

International audience; We examine the problem of computing exactly the Voronoi diagram (via the dual Delaunay graph) of a set of, possibly intersecting, smooth convex \pc in the Euclidean plane, given in parametric form. Pseudo-circles are (convex) sites, every pair of which has at most two intersecting points. The Voronoi diagram is constructed incrementally. Our first contribution is to propose robust and efficient algorithms, under the exact computation paradigm, for all required predicates, thus generalizing earlier algorithms for non-intersecting ellipses. Second, we focus on \kcn, which is the hardest predicate, and express it by a simple sparse $5\times 5$ polynomial system, which a…

research product