0000000000362236

AUTHOR

K. K. Mishra

showing 2 related works from this author

In-situ high-pressure Raman scattering studies in PbWO4 up to 48 GPa

2016

The effect of pressure on the Raman spectrum of PbWO4 has been investigated up to 48 GPa in a diamond-anvil cell using neon as pressure-transmitting medium. Changes are detected in the Raman spectrum at 6.8 GPa as a consequence of a structural phase transition from the tetragonal scheelite structure to the monoclinic PbWO4-III structure. Two additional phase transitions are detected at 15.5 and 21.2 GPa to the previously unknown crystalline phases IV and V. The last one remains stable up to 43.3 GPa. At 47.7 GPa all Raman modes disappear, which could be caused by a pressure-induced amorphization. All structural changes are reversible, being the scheelite phase recovered at ambient pressure.…

Phase transitionMaterials scienceAnalytical chemistryFOS: Physical sciences02 engineering and technology01 natural scienceschemistry.chemical_compoundTetragonal crystal systemsymbols.namesakePhase (matter)0103 physical sciencesMaterials Chemistry010306 general physics[PHYS]Physics [physics]Condensed Matter - Materials ScienceMechanical EngineeringMetals and AlloysMaterials Science (cond-mat.mtrl-sci)021001 nanoscience & nanotechnologyHigh pressureCrystallographychemistryPhase transitionsMechanics of MaterialsScheeliteRaman spectroscopysymbols0210 nano-technologyRaman spectroscopyRaman scatteringAmbient pressureMonoclinic crystal systemJournal of Alloys and Compounds
researchProduct

Experimental and theoretical study of dense YBO3 and the influence of non-hydrostaticity.

2021

[EN] YBO3 is used in photonics applications as a host for red phosphors due to its desirable chemical stability, high quantum efficiency and luminescence intensity. Despite its fundamental thermodynamic nature, the isothermal bulk modulus of YBO3 has remained a contentious issue due to a lack of comprehensive experimental and theoretical data and its vibrational modes are far from being understood. Here, we present an experimental-theoretical structural and vibrational study of YBO3. From structural data obtained from synchrotron X-ray diffraction data and ab initio calculations, we have determined the YBO3 bulk modulus, isothermal compressibility tensor and pressure-volume (P-V) equation o…

Phase transitionMaterials scienceHigh-pressure02 engineering and technology010402 general chemistryInelastic light scattering01 natural sciencessymbols.namesakeAb initio quantum chemistry methodsMaterials ChemistryAnisotropyBulk modulusCondensed matter physicsSynchrotron radiationMechanical EngineeringMetals and Alloys021001 nanoscience & nanotechnology0104 chemical sciencesX-ray diffractionPhosphorsMechanics of MaterialsMolecular vibrationFISICA APLICADACompressibilitysymbolsAnisotropy0210 nano-technologyRaman spectroscopyRaman scattering
researchProduct