The influence of circumnuclear environment on the radio emission from TDE jets
Dozens of stellar tidal disruption events (TDEs) have been identified at optical, UV and X-ray wavelengths. A small fraction of these, most notably Swift J1644+57, produce radio synchrotron emission, consistent with a powerful, relativistic jet shocking the surrounding circumnuclear gas. The dearth of similar non-thermal radio emission in the majority of TDEs may imply that powerful jet formation is intrinsically rare, or that the conditions in galactic nuclei are typically unfavorable for producing a detectable signal. Here we explore the latter possibility by constraining the radial profile of the gas density encountered by a TDE jet using a one-dimensional model for the circumnuclear med…