0000000000362539
AUTHOR
Wiesław Kubiś
Finitely fibered Rosenthal compacta and trees
We study some topological properties of trees with the interval topology. In particular, we characterize trees which admit a 2-fibered compactification and we present two examples of trees whose one-point compactifications are Rosenthal compact with certain renorming properties of their spaces of continuous functions.
Almost disjoint families of countable sets and separable complementation properties
We study the separable complementation property (SCP) and its natural variations in Banach spaces of continuous functions over compacta $K_{\mathcal A}$ induced by almost disjoint families ${\mathcal A}$ of countable subsets of uncountable sets. For these spaces, we prove among others that $C(K_{\mathcal A})$ has the controlled variant of the separable complementation property if and only if $C(K_{\mathcal A})$ is Lindel\"of in the weak topology if and only if $K_{\mathcal A}$ is monolithic. We give an example of ${\mathcal A}$ for which $C(K_{\mathcal A})$ has the SCP, while $K_{\mathcal A}$ is not monolithic and an example of a space $C(K_{\mathcal A})$ with controlled and continuous SCP …