Stochastic 0-dimensional Biogeochemical Flux Model: Effect of temperature fluctuations on the dynamics of the biogeochemical properties in a marine ecosystem
Abstract We present a new stochastic model, based on a 0-dimensional version of the well known biogeochemical flux model (BFM), which allows to take into account the temperature random fluctuations present in natural systems and therefore to describe more realistically the dynamics of real marine ecosystems. The study presents a detailed analysis of the effects of randomly varying temperature on the lower trophic levels of the food web and ocean biogeochemical processes. More in detail, the temperature is described as a stochastic process driven by an additive self-correlated Gaussian noise. Varying both correlation time and intensity of the noise source, the predominance of different plank…
Effects of solar irradiance noise on a complex marine trophic web
AbstractThe analysis of experimental data of the solar irradiance, collected on the marine surface, clearly highlights the intrinsic stochasticity of such an environmental parameter. Given this result, effects of randomly fluctuating irradiance on the population dynamics of a marine ecosystem are studied on the basis of the stochastic 0-dimensional biogeochemical flux model. The noisy fluctuations of the irradiance are formally described as a multiplicative Ornstein-Uhlenbeck process, that is a self-correlated Gaussian noise. Nonmonotonic behaviours of the variance of the marine populations’ biomass are found with respect to the intensity and the autocorrelation time of the noise source, ma…