6533b7dafe1ef96bd126ee16

RESEARCH PRODUCT

Stochastic 0-dimensional Biogeochemical Flux Model: Effect of temperature fluctuations on the dynamics of the biogeochemical properties in a marine ecosystem

Cosimo SolidoroRoberto GrimaudoPaolo LazzariDavide Valenti

subject

Numerical AnalysisBiogeochemical cycleStatistical Mechanics (cond-mat.stat-mech)Stochastic modellingStochastic processApplied MathematicsRandom processesFluxFOS: Physical sciencesPlanktonAtmospheric sciencesNoise (electronics)symbols.namesakeGaussian noiseModeling and SimulationPlankton dynamicsStochastic differential equationssymbolsEnvironmental scienceQuantitative Biology::Populations and EvolutionMarine ecosystemCondensed Matter - Statistical MechanicsMarine ecosystems

description

Abstract We present a new stochastic model, based on a 0-dimensional version of the well known biogeochemical flux model (BFM), which allows to take into account the temperature random fluctuations present in natural systems and therefore to describe more realistically the dynamics of real marine ecosystems. The study presents a detailed analysis of the effects of randomly varying temperature on the lower trophic levels of the food web and ocean biogeochemical processes. More in detail, the temperature is described as a stochastic process driven by an additive self-correlated Gaussian noise. Varying both correlation time and intensity of the noise source, the predominance of different plankton populations is observed, with regimes shifted towards the coexistence or the exclusion of some populations. Finally a Fourier analysis carried out on the time series of the plankton populations shows how the ecosystem responds to the seasonal driving for different values of the noise intensity.

https://dx.doi.org/10.48550/arxiv.2112.09410