0000000000133050

AUTHOR

Roberto Grimaudo

0000-0003-2363-7699

Quasi-Lie Brackets and the Breaking of Time-Translation Symmetry for Quantum Systems Embedded in Classical Baths

Many open quantum systems encountered in both natural and synthetic situations are embedded in classical-like baths. Often, the bath degrees of freedom may be represented in terms of canonically conjugate coordinates, but in some cases they may require a non-canonical or non-Hamiltonian representation. Herein, we review an approach to the dynamics and statistical mechanics of quantum subsystems embedded in either non-canonical or non-Hamiltonian classical-like baths which is based on operator-valued quasi-probability functions. These functions typically evolve through the action of quasi-Lie brackets and their associated Quantum-Classical Liouville Equations, or through quasi-Lie brackets a…

research product

Analytic estimation of transition between instantaneous eigenstates of quantum two-level system

AbstractTransition amplitudes between instantaneous eigenstates of a quantum two-level system are evaluated analytically on the basis of a new parametrization of its evolution operator, which has recently been proposed to construct exact solutions. In particular, the condition under which the transitions are suppressed is examined analytically. It is shown that the analytic expression of the transition amplitude enables us, not only to confirm the adiabatic theorem, but also to derive the necessary and sufficient condition for quantum two-level system to remain in one of the instantaneous eigenstates.

research product

Landau-Majorana-Stuckelberg-Zener dynamics driven by coupling for two interacting qutrit systems

A time-dependent model of two interacting spin qutrits is analyzed is analyzed and solved. The two interacting qutrits are subjected to a longitudinal field linearly varying over time as in the Landau-Majorana-St\"uckelberg- Zener (LMSZ) scenario. Although a transverse field is absent, we show the occurrence of LMSZ transitions assisted by the coupling between the two spin-qutrits. Such a physical effect permits us to estimate experimentally the coupling strength between the spins and allows the generation of entangled states of the two qutrits by appropriately setting the slope of the ramp. Furthermore, the possibility of local and nonlocal control as well as the existence of dark states o…

research product

Greenberger-Horne-Zeilinger-state Generation in Qubit-Chains via a Single Landau-Majorana-Stückelberg-Zener π/2-pulse

A protocol for generating Greenberger-Horne-Zeilinger states in a system of (Formula presented.) coupled qubits is proposed. The Hamiltonian model assumes (Formula presented.) -wise interactions between the (Formula presented.) qubits and the presence of a controllable time-dependent field acting upon one spin only. The dynamical problem is exactly solved thanks to the symmetries of the Hamiltonian model. The possibility of generating GHZ states simulating our physical scenario under both adiabatic and non-adiabatic conditions is within the reach of the experimentalists. This aspect is discussed in detail.

research product

Quantum Correlation Dynamics in Controlled Two-Coupled-Qubit Systems

We study and compare the time evolutions of concurrence and quantum discord in a driven system of two interacting qubits prepared in a generic Werner state. The corresponding quantum dynamics is exactly treated and manifests the appearance and disappearance of entanglement. Our analytical treatment transparently unveils the physical reasons for the occurrence of such a phenomenon, relating it to the dynamical invariance of the X structure of the initial state. The quantum correlations which asymptotically emerge in the system are investigated in detail in terms of the time evolution of the fidelity of the initial Werner state.

research product

Stochastic 0-dimensional Biogeochemical Flux Model: Effect of temperature fluctuations on the dynamics of the biogeochemical properties in a marine ecosystem

Abstract We present a new stochastic model, based on a 0-dimensional version of the well known biogeochemical flux model (BFM), which allows to take into account the temperature random fluctuations present in natural systems and therefore to describe more realistically the dynamics of real marine ecosystems. The study presents a detailed analysis of the effects of randomly varying temperature on the lower trophic levels of the food web and ocean biogeochemical processes. More in detail, the temperature is described as a stochastic process driven by an additive self-correlated Gaussian noise. Varying both correlation time and intensity of the noise source, the predominance of different plank…

research product

Coupling-assisted Landau-Majorana-Stückelberg-Zener transition in a system of two interacting spin qubits

We analyse a system of two interacting spin-qubits subjected to a Landau-Majorana-Stuckelberg-Zener (LMSZ) ramp. We prove that LMSZ transitions of the two spin-qubits are possible without an external transverse static field since its role is played by the coupling between the spin-qubits. We show how such a physical effect could be exploited to estimate the strength of the interaction between the two spin-qubits and to generate entangled states of the system by appropriately setting the slope of the ramp. Moreover, the study of effects of the coupling parameters on the time-behaviour of the entanglement is reported. Finally, our symmetry-based approach allows us to discuss also effects stem…

research product

Non-volatile memory characteristics of a Ti/HfO2/Pt synaptic device with a crossbar array structure

The resistive switching and synaptic behavior of a fabricated Ti/HfO2/Pt crossbar array device are investigated. The results demonstrated that TiOx layers are created by the movement of oxygen ions during the positive SET process, thereby improving the endurance and multilevel switching behavior of the device. The random properties of SET process were described with the help of stochastic model of memristor based on the length of conductive filament. The analysis of the mean first passage time allows estimating the parameters of the dielectric switching layer such as the activation energy of the diffusive defects, its variation under the influence of the driving voltage and the value of the…

research product

Dzyaloshinskii-Moriya and dipole-dipole interactions affect coupling-based Landau-Majorana-Stückelberg-Zener transitions

It has been theoretically demonstrated that two spins (qubits or qutrits), coupled by exchange interaction only, undergo a coupling-based joint Landau-Majorana-St\"uckelberg-Zener (LMSZ) transition when a linear ramp acts upon one of the two spins. Such a transition, under appropriate conditions on the parameters, drives the two-spin system toward a maximally entangled state. In this paper, effects on the quantum dynamics of the two qudits, stemming from the Dzyaloshinskii-Moriya (DM) and dipole-dipole (d-d) interactions, are investigated qualitatively and quantitatively. The enriched Hamiltonian model of the two spins, shares with the previous microscopic one the same C2-symmetry which onc…

research product

Superradiant Quantum Phase Transition for an Exactly Solvable Two-Qubit Spin-Boson Model

A spin-boson-like model with two interacting qubits is analysed. The model turns out to be exactly solvable since it is characterized by the exchange symmetry between the two spins. The explicit expressions of eigenstates and eigenenergies make it possible to analytically unveil the occurrence of first-order quantum phase transitions. The latter are physically relevant since they are characterized by abrupt changes in the two-spin subsystem concurrence, in the net spin magnetization and in the mean photon number.

research product

Effects of solar irradiance noise on a complex marine trophic web

AbstractThe analysis of experimental data of the solar irradiance, collected on the marine surface, clearly highlights the intrinsic stochasticity of such an environmental parameter. Given this result, effects of randomly fluctuating irradiance on the population dynamics of a marine ecosystem are studied on the basis of the stochastic 0-dimensional biogeochemical flux model. The noisy fluctuations of the irradiance are formally described as a multiplicative Ornstein-Uhlenbeck process, that is a self-correlated Gaussian noise. Nonmonotonic behaviours of the variance of the marine populations’ biomass are found with respect to the intensity and the autocorrelation time of the noise source, ma…

research product

Time evolution of a pair of distinguishable interacting spins subjected to controllable and noisy magnetic fields

The quantum dynamics of a $\hat{\mathbf{J}}^2=(\hat{\mathbf{j}}_1+\hat{\mathbf{j}}_2)^2$-conserving Hamiltonian model describing two coupled spins $\hat{\mathbf{j}}_1$ and $\hat{\mathbf{j}}_2$ under controllable and fluctuating time-dependent magnetic fields is investigated. Each eigenspace of $\hat{\mathbf{J}}^2$ is dynamically invariant and the Hamiltonian of the total system restricted to any one of such $(j_1+j_2)-|j_1-j_2|+1$ eigenspaces, possesses the SU(2) structure of the Hamiltonian of a single fictitious spin acted upon by the total magnetic field. We show that such a reducibility holds regardless of the time dependence of the externally applied field as well as of the statistical…

research product

Cooling of Many-Body Systems via Selective Interactions

We propose a model describing $N$ spin-1/2 systems coupled through $N$-order homogeneous interaction terms, in presence of local time-dependent magnetic fields. This model can be experimentally implemented with current technologies in trapped ions and superconducting circuits. By introducing a chain of unitary transformations, we succeed in exactly converting the quantum dynamics of this system into that of $2^{N-1}$ fictitious spin-1/2 dynamical problems. We bring to light the possibility of controlling the unitary evolution of the $N$ spins generating GHZ states under specific time-dependent scenarios. Moreover, we show that by appropriately engineering the time-dependence of the coupling…

research product

Exactly solvable time-dependent pseudo-Hermitian su(1,1) Hamiltonian models

An exact analytical treatment of the dynamical problem for time-dependent 2x2 pseudo-hermitian su(1,1) Hamiltonians is reported. A class of exactly solvable and physically transparent new scenarios are identified within both classical and quantum contexts. Such a class is spanned by a positive parameter $\nu$ that allows to distinguish two different dynamical regimes. Our results are usefully employed for exactly solving a classical propagation problem in a guided wave optics scenario. The usefulness of our procedure in a quantum context is illustrated by defining and investigating the su(1,1) "Rabi" scenario bringing to light analogies and differences with the standard su(2) Rabi model. Ou…

research product

Exact quantum dynamics of interacting spin systems subjected to controllable time dependent magnetic fields

research product

New approach to describe two coupled spins in a variable magnetic field

We propose a method to describe the evolution of two spins coupled by hyperfine i nteraction in an external time- dependent magnetic field. We apply the approach to the case of hyperfine interaction with axial symmetry, which can be solved exactly in a constant, appropriately oriented magnetic field. In order to t reat t he n onstationary d ynamical p roblem, we modify the time-dependent Schrödinger equation through a change of representation that, by exploiting an instantaneous (adiabatic) basis makes the time-dependent Hamiltonian diagonal at any time instant. The solution of the transformed time-dependent Schrödinger FRVBUJPO in the form of chronologically ordered exponents with transpar…

research product

Spin-1/2 sub-dynamics nested in the quantum dynamics of two coupled qutrits

In this paper we investigate the quantum dynamics of two spin-1 systems, $\vec{\textbf{S}}_1$ and $\vec{\textbf{S}}_2$, adopting a generalized $(\vec{\textbf{S}}_1+\vec{\textbf{S}}_2)^2$-nonconserving Heisenberg model. We show that, due to its symmetry property, the nine-dimensional dynamics of the two qutrits exactly decouples into the direct sum of two sub-dynamics living in two orthogonal four- and five-dimensional subspaces. Such a reduction is further strengthened by our central result consisting in the fact that in the four-dimensional dynamically invariant subspace, the two qutrits quantum dynamics, with no approximations, is equivalent to that of two non interacting spin 1/2's. The …

research product

Spin‐Chain‐Star Systems: Entangling Multiple Chains of Spin Qubits

We consider spin-chain-star systems characterized by N-wise many-body interactions between the spins in each chain and the central one. We show that such systems can be exactly mapped into standard spin-star systems through unitary transformations. Such an approach allows the solution of the dynamic problem of an XX$X X$ spin-chain-star model and transparently shows the emergence of quantum correlations in the system, based on the idea of entanglement between chains.

research product

Analytically solvable 2×2 PT -symmetry dynamics from su(1,1)-symmetry problems

A protocol for explicitly constructing the exact time-evolution operators generated by $2\ifmmode\times\else\texttimes\fi{}2$ time-dependent $PT$-symmetry Hamiltonians is reported. Its mathematical applicability is illustrated with the help of appropriate examples. The physical relevance of the proposed approach within gain-loss system scenarios, like two coupled waveguides, is discussed in detail.

research product

Dynamics of a harmonic oscillator coupled with a Glauber amplifier

A system of a quantum harmonic oscillator bi-linearly coupled with a Glauber amplifier is analysed considering a time-dependent Hamiltonian model. The Hilbert space of this system may be exactly subdivided into invariant finite dimensional subspaces. Resorting to the Jordan-Schwinger map, the dynamical problem within each invariant subspace may be traced back to an effective SU(2) Hamiltonian model expressed in terms of spin variables only. This circumstance allows to analytically solve the dynamical problem and thus to study the exact dynamics of the oscillator-amplifier system under specific time-dependent scenarios. Peculiar physical effects are brought to light by comparing the dynamics…

research product

Two-qubit entanglement generation through non-Hermitian Hamiltonians induced by repeated measurements on an ancilla

In contrast to classical systems, actual implementation of non-Hermitian Hamiltonian dynamics for quantum systems is a challenge because the processes of energy gain and dissipation are based on the underlying Hermitian system&ndash

research product

Josephson-junction-based axion detection through resonant activation

We discuss the resonant activation phenomenon on a Josephson junction due to the coupling of the Josephson system with axions. We show how such an effect can be exploited for axion detection. A nonmonotonic behavior, with a minimum, of the mean switching time from the superconducting to the resistive state versus the ratio of the axion energy and the Josephson plasma energy is found. We demonstrate how variations in switching times make it possible to detect the presence of the axion field. An experimental protocol for observing axions through their coupling with a Josephson system is proposed.

research product

Classes of Exactly Solvable Generalized Semi-Classical Rabi Systems

The exact quantum dynamics of a single spin-1/2 in a generic time-dependent classical magnetic field is investigated and compared with the quantum motion of a spin-1/2 studied by Rabi and Schwinger. The possibility of regarding the scenario studied in this paper as a generalization of that considered by Rabi and Schwinger is discussed and a notion of time-dependent resonance condition is introduced and carefully legitimated and analysed. Several examples help to disclose analogies and departures of the quantum motion induced in a generalized Rabi system with respect to that exhibited by the spin-1/2 in a magnetic field precessing around the $z$-axis. We find that, under generalized resonanc…

research product

Proposal of a Computational Approach for Simulating Thermal Bosonic Fields in Phase Space

When a quantum field is in contact with a thermal bath, the vacuum state of the field may be generalized to a thermal vacuum state, which takes into account the thermal noise. In thermo field dynamics, this is realized by doubling the dimensionality of the Fock space of the system. Interestingly, the representation of thermal noise by means of an augmented space is also found in a distinctly different approach based on the Wigner transform of both the field operators and density matrix, which we pursue here. Specifically, the thermal noise is introduced by augmenting the classical-like Wigner phase space by means of Nos&eacute

research product

Dynamics of quantum discord of two coupled spin-1/2’s subjected to time-dependent magnetic fields

Abstract We describe the dynamics of quantum discord of two interacting spin-1/2’s subjected to controllable time-dependent magnetic fields. The exact time evolution of discord is given for various input mixed states consisting of classical mixtures of two Bell states. The quantum discord manifests a complex oscillatory behaviour in time and is compared with that of quantum entanglement, measured by concurrence. The interplay of the action of the time-dependent magnetic fields and the spin-coupling mechanism in the occurrence and evolution of quantum correlations is examined in detail.

research product

An example of interplay between Physics and Mathematics: Exact resolution of a new class of Riccati Equations

A novel recipe for exactly solving in finite terms a class of special differential Riccati equations is reported. Our procedure is entirely based on a successful resolution strategy quite recently applied to quantum dynamical time-dependent SU(2) problems. The general integral of exemplary differential Riccati equations, not previously considered in the specialized literature, is explicitly determined to illustrate both mathematical usefulness and easiness of applicability of our proposed treatment. The possibility of exploiting the general integral of a given differential Riccati equation to solve an SU(2) quantum dynamical problem, is succinctly pointed out.

research product

Exactly solvable time-dependent models of two interacting two-level systems

Two coupled two-level systems placed under external time-dependent magnetic fields are modeled by a general Hamiltonian endowed with a symmetry that enables us to reduce the total dynamics into two independent two-dimensional sub-dynamics. Each of the sub-dynamics is shown to be brought into an exactly solvable form by appropriately engineering the magnetic fields and thus we obtain an exact time evolution of the compound system. Several physically relevant and interesting quantities are evaluated exactly to disclose intriguing phenomena in such a system.

research product