0000000000364572

AUTHOR

J. R. Pierce

showing 4 related works from this author

Evaluation of observed and modelled aerosol lifetimes using radioactive tracers of opportunity and an ensemble of 19 global models

2016

Aerosols have important impacts on air quality and climate, but the processes affecting their removal from the atmosphere are not fully understood and are poorly constrained by observations. This makes modelled aerosol lifetimes uncertain. In this study, we make use of an observational constraint on aerosol lifetimes provided by radionuclide measurements and investigate the causes of differences within a set of global models. During the Fukushima Dai-Ichi nuclear power plant accident of March 2011, the radioactive isotopes cesium-137 (137Cs) and xenon-133 (133Xe) were released in large quantities. Cesium attached to particles in the ambient air, approximately according to their available ae…

lcsh:Chemistrylcsh:QD1-999lcsh:Physicslcsh:QC1-999Atmospheric Chemistry and Physics
researchProduct

Vertical profiles of light absorption and scattering associated with black carbon particle fractions in the springtime Arctic above 79° N

2020

Despite the potential importance of black carbon (BC) for radiative forcing of the Arctic atmosphere, vertically resolved measurements of the particle light scattering coefficient (σsp) and light absorption coefficient (σap) in the springtime Arctic atmosphere are infrequent, especially measurements at latitudes at or above 80∘ N. Here, relationships among vertically distributed aerosol optical properties (σap, σsp and single scattering albedo or SSA), particle microphysics and particle chemistry are examined for a region of the Canadian archipelago between 79.9 and 83.4∘ N from near the surface to 500 hPa. Airborne data collected during April 2015 are combined with gro…

Atmospheric Science010504 meteorology & atmospheric sciencesMicrophysicsSingle-scattering albedo010501 environmental sciencesRadiative forcingAtmospheric sciences01 natural scienceslcsh:QC1-999Light scatteringAerosollcsh:ChemistryTroposphereAtmospherelcsh:QD1-999Arctic13. Climate actionlcsh:Physics0105 earth and related environmental sciencesAtmospheric Chemistry and Physics
researchProduct

Overview paper: New insights into aerosol and climate in the Arctic

2019

Motivated by the need to predict how the Arctic atmosphere will change in a warming world, this article summarizes recent advances made by the research consortium NETCARE (Network on Climate and Aerosols: Addressing Key Uncertainties in Remote Canadian Environments) that contribute to our fundamental understanding of Arctic aerosol particles as they relate to climate forcing. The overall goal of NETCARE research has been to use an interdisciplinary approach encompassing extensive field observations and a range of chemical transport, earth system, and biogeochemical models. Several major findings and advances have emerged from NETCARE since its formation in 2013. (1) Unexpectedly high summer…

[PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph]Arctic hazeAtmospheric Science010504 meteorology & atmospheric sciencesGlobal warmingClimate change010501 environmental sciencesMineral dustAtmospheric sciences01 natural sciencesSea surface microlayerlcsh:QC1-999Atmospheric SciencesAerosollcsh:ChemistryClimate ActionDeposition (aerosol physics)lcsh:QD1-999Arctic[SDU.STU.CL]Sciences of the Universe [physics]/Earth Sciences/Climatology13. Climate actionMeteorology & Atmospheric Scienceslcsh:PhysicsAstronomical and Space Sciences0105 earth and related environmental sciencesAtmospheric Chemistry and Physics
researchProduct

Evaluation of observed and modelled aerosol lifetimes using radioactive tracers of opportunity and an ensemble of 19 global models

2015

Abstract. Aerosols have important impacts on air quality and climate, but the processes affecting their removal from the atmosphere are not fully understood and are poorly constrained by observations. This makes modelled aerosol lifetimes uncertain. In this study, we make use of an observational constraint on aerosol lifetimes provided by radionuclide measurements and investigate the causes of differences within a set of global models. During the Fukushima Dai-Ichi nuclear power plant accident of March 2011, the radioactive isotopes cesium-137 (137Cs) and xenon-133 (133Xe) were released in large quantities. Cesium attached to particles in the ambient air, approximately according to their av…

[PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph][SDU.OCEAN]Sciences of the Universe [physics]/Ocean Atmosphere010504 meteorology & atmospheric sciences13. Climate action010501 environmental sciences01 natural sciences7. Clean energy0105 earth and related environmental sciences
researchProduct