0000000000364977

AUTHOR

Dmitri V. Averin

One dimensional arrays and solitary tunnel junctions in the weak coulomb blockade regime: CBT thermometry

In this article we review the use of the tunnel junction arrays for primary thermometry. In addition to our basic experimental and theoretical results we stress the insensitivity of this method to the fluctuating background charges, to nonidealities in the array and to magnetic field. Important new results of this article are the low temperature corrections to the half width and depth of the measured conductance dip beyond the linear approximation. We also point ou that short arrays, single tunnel junctions in particular, show interesting deviations from the universal behaviour of the long arrays.

research product

Resonant Tunneling through a Macroscopic Charge State in a Superconducting Single Electron Transistor

We predict theoretically and observe in experiment that the differential conductance of a superconducting single electron transistor exhibits a peak which is a complete analog, in a macroscopic system, of a standard resonant tunneling peak associated with tunneling through a single quantum state. In particular, in a symmetric transistor, the peak height is universal and equal to ${e}^{2}/2\ensuremath{\pi}\ensuremath{\Elzxh}$. Away from the resonance we clearly observe the cotunneling current which, in contrast to the normal-metal transistor, varies linearly with the bias voltage.

research product

Probing High Frequency Noise with Macroscopic Resonant Tunneling

We have developed a method for extracting the high-frequency noise spectral density of an rf-SQUID flux qubit from macroscopic resonant tunneling (MRT) rate measurements. The extracted noise spectral density is consistent with that of an ohmic environment up to frequencies $~$4 GHz. We have also derived an expression for the MRT line shape expected for a noise spectral density consisting of such a broadband ohmic component and an additional strongly peaked low-frequency component. This hybrid model provides an excellent fit to experimental data across a range of tunneling amplitudes and temperatures.

research product