0000000000365133

AUTHOR

Shaun Falconer

Condition monitoring of fibre ropes using machine learning

The application of fibre ropes in offshore lifting operations has significant potential for further development. With minimum breaking loads (MBL) equivalent to steel wire at similar diameters and almost neutral buoyancy in water, it is in theory possible to reach depths exceeding 3000 m with smaller cranes and vessels, representing substantial savings in not only potential operation costs. However, with fibre ropes there are different requirements and standards to consider with regards to condition monitoring, maintenance and retirement criteria. Safe and reliable operations are paramount in the offshore sector and any incidents that occur during offshore lifting would not be only signific…

research product

Temperature Measurements as a Method for Monitoring Ropes

Due to an increasing demand for operation at sea depths as low as 3000 m and under, the use of fibre ropes for offshore application in deep sea lifting and mooring is increasing. Consequently, improved knowledge is required regarding these ropes’ thermo-mechanical properties and how these properties change as the rope is being used. This paper presents a 2D model of heat transport in the axial and radial directions along a 28 mm diameter fibre rope typically used for offshore applications. The model is combined with temperature measurements during heating and cooling of the rope, using both thermocouples and a thermal camera. Measurements are performed both on a new rope and on a used that …

research product

Condition Monitoring Technologies for Synthetic Fiber Ropes - a Review

This paper presents a review of different condition monitoring technologies for fiber ropes. Specifically, it presents an overview of the articles and patents on the subject, ranging from the early 70’s up until today with the state of the art. Experimental results are also included and discussed in a conditionmonitoring context,where failuremechanisms and changes in physical parameters give improved insight into the degradation process of fiber ropes. From this review, it is found that automatic width measurement has received surprisingly little attention, and might be a future direction for the development of a continuous condition monitoring system for synthetic fiber ropes.

research product

Remaining useful life estimation of HMPE rope during CBOS testing through machine learning

Fibre rope used in cranes for offshore deployment and recovery has significant potential to perform lifts with smaller cranes and vessels to reach depths limited by weight of steel wire rope. Current condition monitoring methods based on manual inspection and time-based and reactive maintenance have significant potential for improvement coupled with more accurate remaining useful life (RUL) prediction. Machine learning has found use as a condition monitoring approach, coupled with vast improvements in data acquisition methods. This paper details data-driven RUL prediction methods based on machine learning algorithms applied on cyclic-bend-over-sheave (CBOS) tests performed on two fibre rope…

research product

Computer vision and thermal monitoring of HMPE fibre rope condition during CBOS testing

Abstract Fibre rope usage in deep sea lifting operations is gaining more prominence in recent times. With rope minimum break loads (MBL) comparable to that of their steel wire counterparts, the use of high modulus polyethylene (HMPE) ropes is seen as a viable option for use in subsea construction cranes. The ropes are worn out during use and visual inspection remains one of the main methods of determining whether a fibre rope is to be retired from use, therefore a natural extension is condition monitoring through computer vision. Creep and temperature are constraining with HMPE ropes and should be monitored continuously, particularly when the rope is cyclically bent over sheaves. Additional…

research product

Condition classification of fibre ropes during cyclic bend over sheave testing using machine learning

Fibre ropes have been shown to be a viable alternative to steel wire rope for offshore lifting operations. Visual inspection remains a common method of fibre rope condition monitoring and has the potential to be further automated by machine learning. This would provide a valuable aid to current inspection frameworks to make more accurate decisions on recertification or retirement of fibre ropes in operational use. Three different machine learning algorithms: decision tree, random forest and support vector machine are compared to classical statistical approaches such as logistic regression, k-nearest neighbours and Naïve-Bayes for condition classification for fibre ropes under cyclic-bend-ov…

research product