0000000000365186
AUTHOR
Daniel Dai
Recent advances in the preparation of zeolites for the selective catalytic reduction of NOx in diesel engines
Metal-exchanged zeolites with small pore sizes have attracted much attention in recent years due to their application in the selective catalytic reduction (SCR) of NOx in diesel engines. Typically, copper-chabazite (e.g. Cu-SSZ-13) has been gradually used as an SCR catalyst in heavy-duty diesel vehicles over the last decade due to its relatively excellent catalytic performance and stability. However, most SSZ-13 zeolites are still prepared via the traditional hydrothermal process in the presence of organic templates, requiring consecutive solid separation and thermal treatment steps to achieve the final zeolite products. In recent years, several strategies for the environmentally friendly p…
Transformation synthesis of aluminosilicate SSZ-39 zeolite from ZSM-5 and beta zeolite
Aluminosilicate SSZ-39 zeolite has been successfully prepared by transformation from ZSM-5 and beta zeolite in the presence of N,N-diethyl-cis-2,6-dimethylpiperidinium hydroxide (DMPOH) under hydrothermal conditions. Catalytic tests in the selective catalytic reduction of NOx with NH3 (NH3-SCR) show that the copper-exchanged products synthesized from the interzeolite transformation exhibit excellent catalytic performance.
Efficient and rapid transformation of high silica CHA zeolite from FAU zeolite in the absence of water
High silica CHA zeolite plays an important role in selective catalytic reduction of NOx with NH3 (NH3-SCR), but its synthesis is not highly efficient due to the use of a relatively high-cost structural directing agent (SDA) N,N,N-trimethyl-adamantammonium hydroxide (TMAdaOH) and relatively long crystallization time under hydrothermal conditions. Herein, we report an efficient and rapid synthesis of a high silica CHA zeolite possessing good crystallinity and uniform crystals (CHA-ST). The method includes interzeolite transformation of high silica FAU zeolite in the absence of water but the presence of zeolite seeds and a bromide form of the SDA. The absence of water in the synthesis signific…