Low-temperature anharmonic lattice deformations near rotator impurities: A quantum Monte Carlo approach.
At zero temperature the equilibrium structures of a system consisting of a quantum rotator (${\mathrm{N}}_{2}$) embedded in a relaxing lattice (Ar) surrounding are studied with a variational approach. With symmetric wave functions (para-${\mathrm{N}}_{2}$), we obtain a cubic lattice deformation near the rotator, while with antisymmetric wave functions (ortho-${\mathrm{N}}_{2}$), we obtain a tetragonal lattice deformation forming a stable oriented ground state. At low temperatures, we investigate the properties of this system with a quantum Monte Carlo simulation. On top of the tetragonal deformation the width of the nearest-neighbor oscillations follows classical ``scaling'' laws according …