0000000000365937

AUTHOR

Jonathan B. Clark

showing 2 related works from this author

Gypsy endogenous retrovirus maintains potential infectivity in several species of Drosophilids.

2008

Abstract Background Sequences homologous to the gypsy retroelement from Drosophila melanogaster are widely distributed among drosophilids. The structure of gypsy includes an open reading frame resembling the retroviral gene env, which is responsible for the infectious properties of retroviruses. Results In this study we report molecular and phylogeny analysis of the complete env gene from ten species of the obscura group of the genus Drosophila and one species from the genus Scaptomyza. Conclusion The results indicate that in most cases env sequences could produce a functional Env protein and therefore maintain the infectious capability of gypsy in these species.

RetroelementsEvolutionvirusesGenome InsectEndogenous retrovirusSequence alignmentGenes InsectGenes envEvolution MolecularOpen Reading FramesViral Envelope ProteinsPhylogeneticsDrosophilidaeQH359-425AnimalsDrosophilidaeRNA MessengerDrosophila (subgenus)Cloning MolecularGeneEcology Evolution Behavior and SystematicsPhylogenyGeneticsLikelihood FunctionsbiologyModels GeneticReverse Transcriptase Polymerase Chain ReactionEndogenous RetrovirusesDNASequence Analysis DNAbiology.organism_classificationOpen reading frameProtein BiosynthesisDrosophila melanogasterSequence AlignmentResearch ArticleBMC evolutionary biology
researchProduct

Molecular evolution of P transposable elements in the Genus drosophila. II. The obscura species group.

1998

A phylogenetic analysis of P transposable elements in the Drosophila obscura species group is described. Multiple P sequences from each of 10 species were obtained using PCR primers that flank a conserved region of exon 2 of the transposase gene. In general, the P element phylogeny is congruent with the species phylogeny, indicating that the dominant mode of transmission has been vertical, from generation to generation. One manifestation of this is the distinction of P elements from the Old World obscura and subobscura subgroups from those of the New World affinis subgroup. However, the overall distribution of elements within the obscura species group is not congruent with the phylogenetic …

GeneticsbiologyPhylogenetic treeGenes Insectbiology.organism_classificationPolymerase Chain ReactionP elementEvolution MolecularPhylogeneticsGenusMolecular evolutionHorizontal gene transferGeneticsDNA Transposable ElementsAnimalsDrosophilaDrosophila obscuraDrosophila (subgenus)Molecular BiologyEcology Evolution Behavior and SystematicsPhylogenyJournal of molecular evolution
researchProduct