0000000000365951

AUTHOR

Claudia Archetti

0000-0002-3524-1600

A branch-and-cut algorithm for the Orienteering Arc Routing Problem

[EN] In arc routing problems, customers are located on arcs, and routes of minimum cost have to be identified. In the Orienteering Arc Routing Problem (OARP),in addition to a set of regular customers that have to be serviced, a set of potential customers is available. From this latter set, customers have to be chosen on the basis of an associated profit. The objective is to find a route servicing the customers which maximize the total profit collected while satisfying a given time limit on the route.In this paper, we describe large families of facet-inducing inequalities for the OARP and present a branch-and-cut algorithm for its solution. The exact algorithm embeds a procedure which builds…

research product

Formulations for an inventory routing problem

In this paper, we present and compare formulations for the inventory routing problem (IRP) where the demand of customers has to be served, over a discrete time horizon, by capacitated vehicles starting and ending their routes at a depot. The objective of the IRP is the minimization of the sum of inventory and transportation costs. The formulations include known and new mathematical programming formulations. Valid inequalities are also presented. The formulations are tested on a large set of benchmark instances. One of the most significant conclusions is that the formulations that use vehicle-indexed variables are superior to the more compact, aggregate formulations.

research product

A matheuristic for the Team Orienteering Arc Routing Problem

In the Team OrienteeringArc Routing Problem (TOARP) the potential customers are located on the arcs of a directed graph and are to be chosen on the basis of an associated profit. A limited fleet of vehicles is available to serve the chosen customers. Each vehicle has to satisfy a maximum route duration constraint. The goal is to maximize the profit of the served customers. We propose a matheuristic for the TOARP and test it on a set of benchmark instances for which the optimal solution or an upper bound is known. The matheuristic finds the optimal solutions on all, except one, instances of one of the four classes of tested instances (with up to 27 vertices and 296 arcs). The average error o…

research product