0000000000367183

AUTHOR

Gloria Mabel Dubner

Modeling the shock-cloud interaction in SN 1006: unveiling the origin of nonthermal X-ray and gamma-ray emission

The supernova remnant SN 1006 is a source of high-energy particles and its southwestern limb is interacting with a dense ambient cloud, thus being a promising region for gamma-ray hadronic emission. We aim at describing the physics and the nonthermal emission associated with the shock-cloud interaction to derive the physical parameters of the cloud (poorly constrained by the data analysis), to ascertain the origin of the observed spatial variations in the spectral properties of the X-ray synchrotron emission, and to predict spectral and morphological features of the resulting gamma-ray emission. We performed 3-D magnetohydrodynamic simulations modeling the evolution of SN 1006 and its inter…

research product

Predicted gamma-ray image of SN 1006 due to inverse Compton emission

We propose a method to synthesize the inverse Compton (IC) gamma-ray image of a supernova remnant starting from the radio (or hard X-ray) map and using results of the spatially resolved X-ray spectral analysis. The method is successfully applied to SN 1006. We found that synthesized IC gamma-ray images of SN 1006 show morphology in nice agreement with that reported by the H.E.S.S. collaboration. The good correlation found between the observed very-high energy gamma-ray and X-ray/radio appearance can be considered as an evidence that the gamma-ray emission of SN 1006 observed by H.E.S.S. is leptonic in origin, though the hadronic origin may not be excluded.

research product

Thermal emission, shock modification, and X-ray emitting ejecta in SN 1006

Efficient particle acceleration can modify the structure of supernova remnants. In this context we present the results of the combined analysis of the XMM-Newton EPIC archive observations of SN 1006. We aim at describing the spatial distribution of the physical and chemical properties of the X-ray emitting plasma at the shock front. We investigate the contribution of thermal and non-thermal emission to the X-ray spectrum at the rim of the remnant to study how the acceleration processes affect the X-ray emitting plasma. We perform a spatially resolved spectral analysis on a set of regions covering the whole rim of the shell and we exploit the results of the spectral analysis to produce a cou…

research product