0000000000367939

AUTHOR

Giulio Cerullo

showing 17 related works from this author

Electrostatic Tuning of the Ligand Binding Mechanism by Glu27 in Nitrophorin 7

2018

AbstractNitrophorins (NP) 1–7 are NO-carrying heme proteins found in the saliva of the blood-sucking insect Rhodnius prolixus. The isoform NP7 displays peculiar properties, such as an abnormally high isoelectric point, the ability to bind negatively charged membranes, and a strong pH sensitivity of NO affinity. A unique trait of NP7 is the presence of Glu in position 27, which is occupied by Val in other NPs. Glu27 appears to be important for tuning the heme properties, but its influence on the pH-dependent NO release mechanism, which is assisted by a conformational change in the AB loop, remains unexplored. Here, in order to gain insight into the functional role of Glu27, we examine the ef…

Models Molecular0301 basic medicineConformational changeProtein ConformationMolecular biologylcsh:MedicineSangCrystallography X-RayLigands01 natural scienceschemistry.chemical_compoundProtein structureModelsZoologiaBloodsucking insectsNitrophorinStatic electricitylcsh:ScienceHemeCell receptorschemistry.chemical_classificationCrystallographyMultidisciplinaryParasitologiaAmino acidBloodRhodniusInsect ProteinsAnimals; Crystallography X-Ray; Glutamic Acid; Heme; Hemeproteins; Insect Proteins; Ligands; Models Molecular; Molecular Dynamics Simulation; Mutation; Protein Conformation; Rhodnius; Salivary Proteins and Peptides; Static ElectricityHemeproteinsHemeproteinStatic ElectricityGlutamic AcidHemeMolecular Dynamics Simulation010402 general chemistryArticle03 medical and health sciencesAnimalsSalivary Proteins and PeptidesBiologia molecularInsectes hematòfags030102 biochemistry & molecular biologylcsh:RMolecular0104 chemical sciencesIsoelectric pointchemistryMutationX-RayBiophysicslcsh:QReceptors cel·lularsParasitologyZoologyScientific Reports
researchProduct

π-Extended Pyrene-Fused Double [7]Carbohelicene as a Chiral Polycyclic Aromatic Hydrocarbon

2019

A π-extended double [7]carbohelicene 2 with fused pyrene units was synthesized, revealing considerable intra- and intermolecular π–π interactions as confirmed with X-ray crystallography. As compared to the previous double [7]carbohelicene 1, the π-extended homologue 2 demonstrated considerably red-shifted absorption with an onset at 645 nm (1: 550 nm) corresponding to a smaller optical gap of 1.90 eV (1: 2.25 eV). A broad near-infrared emission from 600 to 900 nm with a large Stokes shift of ∼100 nm (2.3 × 103 cm–1) was recorded for 2, implying formation of an intramolecular excimer upon excitation, which was corroborated with femtosecond transient absorption spectroscopy. Moreover, 2 revea…

General Chemistry010402 general chemistry01 natural sciencesBiochemistryArticleCatalysis0104 chemical sciencesChiral column chromatographysymbols.namesakeCrystallographychemistry.chemical_compoundColloid and Surface ChemistrychemistryStokes shiftIntramolecular forceUltrafast laser spectroscopysymbolsPyreneDensity functional theorySpectroscopyIsomerizationJournal of the American Chemical Society
researchProduct

Strong Coupling of Coherent Phonons to Excitons in Semiconducting Monolayer MoTe$_2$

2023

The coupling of the electron system to lattice vibrations and their time-dependent control and detection provides unique insight into the non-equilibrium physics of semiconductors. Here, we investigate the ultrafast transient response of semiconducting monolayer 2$H$-MoTe$_2$ encapsulated with $h$BN using broadband optical pump-probe microscopy. The sub-40-fs pump pulse triggers extremely intense and long-lived coherent oscillations in the spectral region of the A' and B' exciton resonances, up to $\sim$20% of the maximum transient signal, due to the displacive excitation of the out-of-plane $A_{1g}$ phonon. Ab-initio calculations reveal a dramatic rearrangement of the optical absorption of…

Condensed Matter - Mesoscale and Nanoscale PhysicsMesoscale and Nanoscale Physics (cond-mat.mes-hall)FOS: Physical sciences
researchProduct

Acoustic dynamics of network-forming glasses at mesoscopic wavelengths

2013

The lack of long-range structural order in amorphous solids induces well known thermodynamic anomalies, which are the manifestation of distinct peculiarities in the vibrational spectrum. Although the impact of such anomalies vanishes in the long wavelength, elastic continuum limit, it dominates at length scales comparable to interatomic distances, implying an intermediate transition regime still poorly understood. Here we report a study of such mesoscopic domains by means of a broadband version of picosecond photo-acoustics, developed to coherently generate and detect hypersonic sound waves in the sub-THz region with unprecedented sampling efficiency. We identify a temperature-dependent fra…

Physics::OpticsGeneral Physics and Astronomy02 engineering and technologyBioinformatics01 natural sciencesArticleGeneral Biochemistry Genetics and Molecular BiologyOpticsFractal0103 physical sciencesBroadband010306 general physicsPhysicsMesoscopic physicsMultidisciplinarybusiness.industryAttenuationDynamics (mechanics)General Chemistry021001 nanoscience & nanotechnologyMaterials sciencePhysical sciencesWavelengthPicosecond0210 nano-technologybusiness
researchProduct

Structure and dynamics of the membrane attaching nitric oxide transporter nitrophorin 7 [v1; ref status: indexed, http://f1000r.es/508]

2015

Nitrophorins represent a unique class of heme proteins that are able to perform the delicate transportation and release of the free-radical gaseous messenger nitric oxide (NO) in a pH-triggered manner. Besides its ability to bind to phospholipid membranes, the N-terminus contains an additional Leu-Pro-Gly stretch, which is a unique sequence trait, and the heme cavity is significantly altered with respect to other nitrophorins. These distinctive features encouraged us to solve the X-ray crystallographic structures of NP7 at low and high pH and bound with different heme ligands (nitric oxide, histamine, imidazole). The overall fold of the lipocalin motif is well preserved in the different X-r…

lcsh:Rlcsh:Medicinelcsh:QBiomacromolecule-Ligand Interactionslcsh:ScienceChemical Biology of the CellF1000Research
researchProduct

Laser-driven quantum magnonics and terahertz dynamics of the order parameter in antiferromagnets

2017

The impulsive generation of two-magnon modes in antiferromagnets by femtosecond optical pulses, so-called femto-nanomagnons, leads to coherent longitudinal oscillations of the antiferromagnetic order parameter that cannot be described by a thermodynamic Landau-Lifshitz approach. We argue that this dynamics is triggered as a result of a laser-induced modification of the exchange interaction. In order to describe the oscillations we have formulated a quantum mechanical description in terms of magnon pair operators and coherent states. Such an approach allowed us to} derive an effective macroscopic equation of motion for the temporal evolution of the antiferromagnetic order parameter. An impli…

PhysicsMagnonicsStrongly Correlated Electrons (cond-mat.str-el)Condensed Matter - Mesoscale and Nanoscale PhysicsTerahertz radiationMagnonEquations of motionFOS: Physical sciencesPhysics::Optics02 engineering and technologyQuantum entanglement021001 nanoscience & nanotechnology01 natural sciences3. Good healthCondensed Matter - Strongly Correlated ElectronsQuantum mechanicsPicosecondSpectroscopy of Solids and Interfaces0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)Condensed Matter::Strongly Correlated Electrons010306 general physics0210 nano-technologyQuantumSpin-½
researchProduct

Study of Mechanisms of Light-Induced Dissociation of Ru(dcbpy)(CO)2I2 in Solution down to 20 fs Time Resolution

2006

Mechanisms of the light-induced ligand exchange reaction of (trans-I) Ru(dcbpy)(CO)2I2 (dcbpy = 4,4'-dicarboxylic acid-2,2'-bipyridine) in ethanol have been studied by transient absorption spectroscopy. Ultraviolet 20 fs excitation pulses centered at 325 nm were used to populate a vibrationally hot excited pi bipyridyl state of the reactant that quickly relaxes to a dissociative Ru-I state resulting in the release of one of the carbonyl groups. Quantum yield measurements have indicated that about 40% of the initially exited reactant molecules form the final photoproduct. A 62 fs rise component in the transient absorption (TA) signal was observed at all probe wavelengths in the visible regio…

ChemistryAnalytical chemistryQuantum yieldPhotochemistrymedicine.disease_causeDissociation (chemistry)Surfaces Coatings and FilmsExcited stateUltrafast laser spectroscopyMaterials ChemistrymedicineMoleculePhysical and Theoretical ChemistrySpectroscopyExcitationUltravioletThe Journal of Physical Chemistry B
researchProduct

Strong Exciton-Coherent Phonon Coupling in Single-Layer MoS2

2020

Broadband transient absorption with sub-20fs temporal resolution, supported by ab-initio calculations, quantitatively provides the strength of exciton-coherent phonon coupling in 1L-MoS2, showing a resonant profile around the C exciton.

PhysicsCouplingPhononExcitonCondensed Matter::Mesoscopic Systems and Quantum Hall EffectMolecular physicsPhoton countingCondensed Matter::Materials Sciencesymbols.namesakeTemporal resolutionUltrafast laser spectroscopysymbolsRaman spectroscopyRaman scatteringThe 22nd International Conference on Ultrafast Phenomena 2020
researchProduct

Structure and dynamics of the membrane attaching nitric oxide transporter nitrophorin 7 [v2; ref status: indexed, http://f1000r.es/5p1]

2015

Nitrophorins represent a unique class of heme proteins that are able to perform the delicate transportation and release of the free-radical gaseous messenger nitric oxide (NO) in a pH-triggered manner. Besides its ability to bind to phospholipid membranes, the N-terminus of NP7, a member of the NO transporter nitrophorin family, contains an additional Leu-Pro-Gly stretch, which is a unique sequence trait, and the heme cavity is significantly altered with respect to other nitrophorins. These distinctive features encouraged us to solve the X-ray crystallographic structures of NP7 at low and high pH and bound with different heme ligands (nitric oxide, histamine, imidazole). The overall fold of…

lcsh:Rlcsh:Medicinelcsh:QBiomacromolecule-Ligand Interactionslcsh:ScienceChemical Biology of the CellF1000Research
researchProduct

Intravalley spin-flip relaxation dynamics in single-layer WS2

2019

Two-dimensional Transition Metal Dichalcogenides (TMDs) have been widely studied because of the peculiar electronic band structure and the strong excitonic effects [1]. In these materials the large spin-orbit coupling lifts the spin degeneracy of the valence (VB) and the conduction band (CB) giving rise to the A and B interband excitonic transitions. In monolayer WS2, the spins of electrons in the lowest CB and in the highest VB at K/K' point of the Brillouin zone are antiparallel resulting in an intravalley dark exciton state at a lower energy than the bright exciton, see left panel of Fig.1. On the one hand, the presence of dark excitons has been revealed indirectly from the observation o…

PhysicsValence (chemistry)Condensed matter physicsSpinsScatteringExciton02 engineering and technologyElectronCondensed Matter::Mesoscopic Systems and Quantum Hall Effect021001 nanoscience & nanotechnology01 natural sciencesBrillouin zoneCondensed Matter::Materials Science0103 physical sciencesSpin-flip010306 general physics0210 nano-technologyElectronic band structure
researchProduct

Tuning the Ultrafast Response of Fano Resonances in Halide Perovskite Nanoparticles

2020

International audience; The full control of the fundamental photophysics of nanosystems at frequencies as high as few THz is key for tunable and ultrafast nanophotonic devices and metamaterials. Here we combine geometrical and ultrafast control of the optical properties of halide perovskite nanoparticles, which constitute a prominent platform for nanophotonics. The pulsed photoinjection of free carriers across the semiconducting gap leads to a subpicosecond modification of the far-field electromagnetic properties that is fully controlled by the geometry of the system. When the nanoparticle size is tuned so as to achieve the overlap between the narrowband excitons and the geometry-controlled…

Materials scienceTerahertz radiationNanophotonicsFOS: Physical sciencesGeneral Physics and AstronomyPhysics::Optics02 engineering and technology010402 general chemistrySettore FIS/03 - FISICA DELLA MATERIA01 natural sciencesOptical switchhalide perovskites nanoparticles[SPI]Engineering Sciences [physics]Fano resonance; halide perovskites nanoparticles; ultrafast photophysics; nanophotonics; Mie resonancesPhysics::Atomic and Molecular Clusters[CHIM]Chemical SciencesGeneral Materials ScienceThin filmPhysics::Chemical PhysicsPerovskite (structure)[PHYS]Physics [physics]Condensed Matter - Materials Sciencebusiness.industryMie resonancesGeneral EngineeringMaterials Science (cond-mat.mtrl-sci)Fano resonanceMetamaterialSettore ING-INF/02 - Campi Elettromagnetici021001 nanoscience & nanotechnology0104 chemical sciencesOptoelectronicsFano resonancenanophotonics0210 nano-technologybusinessultrafast photophysicsUltrashort pulseOptics (physics.optics)Physics - Optics
researchProduct

Regioselective Hydrogenation of a 60-Carbon Nanographene Molecule toward a Circumbiphenyl Core.

2019

Regioselective peripheral hydrogenation of a nanographene molecule with 60 contiguous sp2 carbons provides unprecedented access to peralkylated circumbiphenyl (1). Conversion to the circumbiphenyl core structure was unambiguously validated by MALDI-TOF mass spectrometry, NMR, FT-IR, and Raman spectroscopy. UV–vis absorption spectra and DFT calculations demonstrated the significant change of the optoelectronic properties upon peripheral hydrogenation. Stimulated emission from 1, observed via ultrafast transient absorption measurements, indicates potential as an optical gain material.

Absorption spectroscopyChemistryCommunicationChemistry (all)RegioselectivityGeneral Chemistry010402 general chemistryMass spectrometryPhotochemistryCatalysis; Chemistry (all); Biochemistry; Colloid and Surface Chemistry01 natural sciencesBiochemistryCatalysis0104 chemical sciencesCatalysissymbols.namesakeColloid and Surface ChemistryUltrafast laser spectroscopysymbolsMoleculeStimulated emissionRaman spectroscopyJournal of the American Chemical Society
researchProduct

Real-time observation of the intravalley spin-flip process in single-layer WS2

2019

We use helicity-resolved transient absorption spectroscopy to track intravalley scattering dynamics in monolayer WS2. We find that spin-polarized carriers scatter from upper to lower conduction band by reversing their spin orientation on a sub-ps timescale.

Materials scienceCondensed matter physicsScatteringPhysicsQC1-999MonolayerUltrafast laser spectroscopySettore FIS/01 - Fisica SperimentaleProcess (computing)ReversingSpin-flipSpectroscopySpin-½
researchProduct

Optical tuning of dielectric nanoantennas for thermo-optically reconfigurable nonlinear metasurfaces

2021

We demonstrate optically tunable control of second-harmonic generation in all-dielectric nanoantennas: by using a control beam that is absorbed by the nanoresonator, we thermo-optically change the refractive index of the radiating element to modulate the amplitude of the second-harmonic signal. For a moderate temperature increase of roughly 40 K, modulation of the efficiency up to 60% is demonstrated; this large tunability of the single meta-atom response paves the way to exciting avenues for reconfigurable homogeneous and heterogeneous metasurfaces.

Materials sciencebusiness.industryENHANCED 2ND-HARMONIC GENERATIONPhysics::OpticsNonlinear opticsSettore ING-INF/02 - Campi Elettromagnetici02 engineering and technologyDielectric021001 nanoscience & nanotechnology01 natural sciencesSignalAtomic and Molecular Physics and Opticsnonlinear optics optical tuning010309 opticsOpticsAmplitudeModulationAttenuation coefficient0103 physical sciences0210 nano-technologybusinessRefractive indexBeam (structure)Optics Letters
researchProduct

Strongly Coupled Coherent Phonons in Single-Layer MoS 2

2019

We present a transient absorption setup combining broadband detection over the visible-UV range with high temporal resolution ($\sim$20fs) which is ideally suited to trigger and detect vibrational coherences in different classes of materials. We generate and detect coherent phonons (CPs) in single layer (1L) MoS$_2$, as a representative semiconducting 1L-transition metal dichalcogenide (TMD), where the confined dynamical interaction between excitons and phonons is unexplored. The coherent oscillatory motion of the out-of-plane $A'_{1}$ phonons, triggered by the ultrashort laser pulses, dynamically modulates the excitonic resonances on a timescale of few tens fs. We observe an enhancement by…

ramanspectroscopyPhononExcitonGeneral Physics and AstronomyFOS: Physical sciences02 engineering and technologyApplied Physics (physics.app-ph)thz phonons010402 general chemistry01 natural sciencesMolecular physicssymbols.namesakephotoinduced bandgap renormalizationtransient absorption spectroscopyUltrafast laser spectroscopyMesoscale and Nanoscale Physics (cond-mat.mes-hall)General Materials Sciencepulsesexciton−phonon interactionPhysicsab initio calculationCondensed Matter - Materials ScienceCondensed Matter - Mesoscale and Nanoscale Physicstransition metal dichalcogenidesgrapheneGeneral Engineeringmonolayer mos2ResonanceMaterials Science (cond-mat.mtrl-sci)excitationmonodynamicsPhysics - Applied Physics021001 nanoscience & nanotechnology0104 chemical sciencesAmplitudeOrders of magnitude (time)coherent phononsexciton-phonon interactionsymbols0210 nano-technologyRaman spectroscopyExcitationACS Nano
researchProduct

Electron Transfer from Organic Aminophenyl Acid Sensitizers to Titanium Dioxide Nanoparticle Films

2009

Electron transfer from three conjugated amino-phenyl acid dyes to titanium and aluminum oxide nanocrystalline films was studied by using transient absorption spectroscopy with sub 20 fs time-resolution over the visible spectral region. All the dyes attached to TiO2 showed long-lived ground state bleach signals indicative of formation of new species. Global analysis of the transient kinetics of the dyes on TiO2 revealed stimulated emission decays of about 40 fs and less than 300 fs assigned to electron injection. The same dyes on Al2O3 substrates displayed long stimulated emission decays (ns) suggesting that electron transfer is blocked in this high band gap semiconductor. For two of the dye…

Band gapConjugated systemPhotochemistrySurfaces Coatings and FilmsElectronic Optical and Magnetic Materialschemistry.chemical_compoundElectron transferGeneral EnergychemistryTitanium dioxideUltrafast laser spectroscopyDensity functional theoryStimulated emissionPhysical and Theoretical ChemistrySpectroscopyThe Journal of Physical Chemistry C
researchProduct

CCDC 1914718: Experimental Crystal Structure Determination

2019

Related Article: Yunbin Hu, Giuseppe M. Paternò, Xiao-Ye Wang, Xin-Chang Wang, Michele Guizzardi, Qiang Chen, Dieter Schollmeyer, Xiao-Yu Cao, Giulio Cerullo, Francesco Scotognella, Klaus Müllen, Akimitsu Narita|2019|J.Am.Chem.Soc.|141|12797|doi:10.1021/jacs.9b05610

Space GroupCrystallographypyrene-fused double [7]carbohelicene methanedithione solvateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct