6533b7ddfe1ef96bd1275534
RESEARCH PRODUCT
Laser-driven quantum magnonics and terahertz dynamics of the order parameter in antiferromagnets
Olena GomonayJ.h. MentinkDragan MihailovicJairo SinovaGiulio CerulloRoman V. PisarevD. BossiniTh. RasingM. BorovsakAlexey KimelS. Dal Contesubject
PhysicsMagnonicsStrongly Correlated Electrons (cond-mat.str-el)Condensed Matter - Mesoscale and Nanoscale PhysicsTerahertz radiationMagnonEquations of motionFOS: Physical sciencesPhysics::Optics02 engineering and technologyQuantum entanglement021001 nanoscience & nanotechnology01 natural sciences3. Good healthCondensed Matter - Strongly Correlated ElectronsQuantum mechanicsPicosecondSpectroscopy of Solids and Interfaces0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)Condensed Matter::Strongly Correlated Electrons010306 general physics0210 nano-technologyQuantumSpin-½description
The impulsive generation of two-magnon modes in antiferromagnets by femtosecond optical pulses, so-called femto-nanomagnons, leads to coherent longitudinal oscillations of the antiferromagnetic order parameter that cannot be described by a thermodynamic Landau-Lifshitz approach. We argue that this dynamics is triggered as a result of a laser-induced modification of the exchange interaction. In order to describe the oscillations we have formulated a quantum mechanical description in terms of magnon pair operators and coherent states. Such an approach allowed us to} derive an effective macroscopic equation of motion for the temporal evolution of the antiferromagnetic order parameter. An implication of the latter is that the photo-induced spin dynamics represents a macroscopic entanglement of pairs of magnons with femtosecond period and nanometer wavelength. By performing magneto-optical pump-probe experiments with 10 femtosecond resolution in the cubic KNiF$_3$ and the uniaxial K$_2$NiF$_4$ collinear Heisenberg antiferromagnets, we observed coherent oscillations at the frequency of 22 THz and 16 THz, respectively. The detected frequencies as a function of the temperature ideally fit the two-magnon excitation up to the N\'eel point. The experimental signals are described as dynamics of magnetic linear dichroism due to longitudinal oscillations of the antiferromagnetic vector.
year | journal | country | edition | language |
---|---|---|---|---|
2017-10-09 |