0000000000367940

AUTHOR

Ling Hu

Microwave synthesis of core-shell structured biocompatible magnetic nanohybrids in aqueous medium

In the past decade, biocompatible magnetic nanohybrids, i.e. materials consisting of an inorganic core encapsulated by a biocompatible polymeric corona, went throw various developments in biomedical applications especially in the fields of diagnosis and therapy. Numerous descriptions of their syntheses can be found in the literature (Zhang et al., 2002; Flesch et al., 2004; Fan et al., 2007; etc). These two-steps protocols often describe the use of organic or aqueous solvents, classical thermal heating, long time reaction as well as fastidious exchange and drying steps. In recent years, microwave heating has been proven to be a very original technology for nanoparticles synthesis due to its…

research product

One step grafting of monomethoxy poly(ethylenglycol) during synthesis of maghemite nanoparticles in aqueous medium

Abstract Grafting of silanated monomethoxy poly(ethylene glycol) (m-PEG) onto maghemite nanoparticles surface in aqueous medium through one step procedure was investigated. The major characteristic of this work is that the grafting of m-PEG was produced during the synthesis of maghemite nanoparticles. The maghemite nanoparticles were characterized by photon correlation spectroscopy (PCS), zeta potential measurement, X-ray diffraction (XRD), Raman spectroscopy, transmission electron microscopy (TEM), Fourier transform infrared spectrometer (FTIR), and X-ray photoelectron spectroscopy (XPS). The spinel structure of maghemite nanoparticles was verified and successful grafting of m-PEG was evid…

research product