0000000000368018
AUTHOR
Loris Marchal
Online Scheduling of Task Graphs on Hybrid Platforms
Modern computing platforms commonly include accelerators. We target the problem of scheduling applications modeled as task graphs on hybrid platforms made of two types of resources, such as CPUs and GPUs. We consider that task graphs are uncovered dynamically, and that the scheduler has information only on the available tasks, i.e., tasks whose predecessors have all been completed. Each task can be processed by either a CPU or a GPU, and the corresponding processing times are known. Our study extends a previous \(4\sqrt{m/k}\)-competitive online algorithm [2], where m is the number of CPUs and k the number of GPUs (\(m\ge k\)). We prove that no online algorithm can have a competitive ratio …
Scheduling on Two Types of Resources: a Survey
International audience; We study the problem of executing an application represented by a precedence task graph on a parallel machine composed of standard computing cores and accelerators. Contrary to most existing approaches, we distinguish the allocation and the scheduling phases and we mainly focus on the allocation part of the problem: choose the most appropriate type of computing unit for each task. We address both off-line and on-line settings and design generic scheduling approaches. In the first case, we establish strong lower bounds on the worst-case performance of a known approach based on Linear Programming for solving the allocation problem. Then, we refine the scheduling phase …
Online Scheduling of Task Graphs on Heterogeneous Platforms
Modern computing platforms commonly include accelerators. We target the problem of scheduling applications modeled as task graphs on hybrid platforms made of two types of resources, such as CPUs and GPUs. We consider that task graphs are uncovered dynamically, and that the scheduler has information only on the available tasks, i.e., tasks whose predecessors have all been completed. Each task can be processed by either a CPU or a GPU, and the corresponding processing times are known. Our study extends a previous $4\sqrt{m/k}$ 4 m / k -competitive online algorithm by Amaris et al. [1] , where $m$ m is the number of CPUs and $k$ k the number of GPUs ( $m\geq k$ m ≥ k ). We prove that no online…