Localization-Free Power Cartography
Author's accepted manuscript (postprint). © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. Spectrum cartography constructs maps of metrics such as channel gain or received signal power across a geographic area of interest using measurements of spatially distributed sensors. Applications of these maps include network planning, interference coordination, power con…
Online topology estimation for vector autoregressive processes in data networks
An important problem in data sciences pertains to inferring causal interactions among a collection of time series. Upon modeling these as a vector autoregressive (VAR) process, this paper deals with estimating the model parameters to identify the underlying causality graph. To exploit the sparse connectivity of causality graphs, the proposed estimators minimize a group-Lasso regularized functional. To cope with real-time applications, big data setups, and possibly time-varying topologies, two online algorithms are presented to recover the sparse coefficients when observations are received sequentially. The proposed algorithms are inspired by the classic recursive least squares (RLS) algorit…
Channel Gain Cartography via Mixture of Experts
In order to estimate the channel gain (CG) between the locations of an arbitrary transceiver pair across a geographic area of interest, CG maps can be constructed from spatially distributed sensor measurements. Most approaches to build such spectrum maps are location-based, meaning that the input variable to the estimating function is a pair of spatial locations. The performance of such maps depends critically on the ability of the sensors to determine their positions, which may be drastically impaired if the positioning pilot signals are affected by multi-path channels. An alternative location-free approach was recently proposed for spectrum power maps, where the input variable to the maps…
Dynamic network identification from non-stationary vector autoregressive time series
Learning the dynamics of complex systems features a large number of applications in data science. Graph-based modeling and inference underpins the most prominent family of approaches to learn complex dynamics due to their ability to capture the intrinsic sparsity of direct interactions in such systems. They also provide the user with interpretable graphs that unveil behavioral patterns and changes. To cope with the time-varying nature of interactions, this paper develops an estimation criterion and a solver to learn the parameters of a time-varying vector autoregressive model supported on a network of time series. The notion of local breakpoint is proposed to accommodate changes at individu…
Online Hyperparameter Search Interleaved with Proximal Parameter Updates
There is a clear need for efficient hyperparameter optimization (HO) algorithms for statistical learning, since commonly applied search methods (such as grid search with N-fold cross-validation) are inefficient and/or approximate. Previously existing gradient-based HO algorithms that rely on the smoothness of the cost function cannot be applied in problems such as Lasso regression. In this contribution, we develop a HO method that relies on the structure of proximal gradient methods and does not require a smooth cost function. Such a method is applied to Leave-one-out (LOO)-validated Lasso and Group Lasso, and an online variant is proposed. Numerical experiments corroborate the convergence …