0000000000368077

AUTHOR

Ines Witte

Protective effect of paraoxonase-2 against endoplasmic reticulum stress-induced apoptosis is lost upon disturbance of calcium homoeostasis

PON2 (paraoxonase-2) is a ubiquitously expressed antioxidative protein which is largely found in the ER (endoplasmic reticulum). Addressing the cytoprotective functions of PON2, we observed that PON2 overexpression provided significant resistance to ER-stress-induced caspase 3 activation when the ER stress was induced by interference with protein modification (by tunicamycin or dithiothreitol), but not when ER stress was induced by disturbance of Ca2+ homoeostasis (by thapsigargin or A23187). When analysing the underlying molecular events, we found an activation of the PON2 promoter in response to all tested ER-stress-inducing stimuli. However, only tunicamycin and dithiothreitol resulted i…

research product

Novel Paraoxonase 2-Dependent Mechanism Mediating the Biological Effects of the Pseudomonas aeruginosa Quorum-Sensing Molecule N-(3-Oxo-Dodecanoyl)-l-Homoserine Lactone

ABSTRACT Pseudomonas aeruginosa produces N -(3-oxo-dodecanoyl)- l -homoserine lactone (3OC12), a crucial signaling molecule that elicits diverse biological responses in host cells thought to subvert immune defenses. The mechanism mediating many of these responses remains unknown. The intracellular lactonase paraoxonase 2 (PON2) hydrolyzes and inactivates 3OC12 and is therefore considered a component of host cells that attenuates 3OC12-mediated responses. Here, we demonstrate in cell lines and in primary human bronchial epithelial cells that 3OC12 is rapidly hydrolyzed intracellularly by PON2 to 3OC12 acid, which becomes trapped and accumulates within the cells. Subcellularly, 3OC12 acid acc…

research product

Assessment of Endoplasmic Reticulum Stress and the Unfolded Protein Response in Endothelial Cells

In the vascular wall, the most inner cell layer that separates the blood from organelles is comprised of only a single layer of endothelial cells (ECs). This cell type is fundamental to a large variety of processes, ranging from blood coagulation and interaction with inflammatory cells to cardiovascular diseases such as hypertension, diabetes, and atherosclerosis. Dysfunction of ECs is often causally linked to these processes such that research exploring such events attracted much attention. Damage of ECs and subsequent disruption of the intact endothelial barrier can result not only from oxidative stress, but also from conditions that stress the endoplasmic reticulum (ER) and induce a sign…

research product

One Enzyme, Two Functions

The human enzyme paraoxonase-2 (PON2) has two functions, an enzymatic lactonase activity and the reduction of intracellular oxidative stress. As a lactonase, it dominantly hydrolyzes bacterial signaling molecule 3OC12 and may contribute to the defense against pathogenic Pseudomonas aeruginosa. By its anti-oxidative effect, PON2 reduces cellular oxidative damage and influences redox signaling, which promotes cell survival. This may be appreciated but also deleterious given that high PON2 levels reduce atherosclerosis but may stabilize tumor cells. Here we addressed the unknown mechanisms and linkage of PON2 enzymatic and anti-oxidative function. We demonstrate that PON2 indirectly but specif…

research product

Paraoxonase-2 alters hematopoietic stem cell differentiation through redox signalling

research product

PON3 is upregulated in cancer tissues and protects against mitochondrial superoxide-mediated cell death

To achieve malignancy, cancer cells convert numerous signaling pathways, with evasion from cell death being a characteristic hallmark. The cell death machinery represents an anti-cancer target demanding constant identification of tumor-specific signaling molecules. Control of mitochondrial radical formation, particularly superoxide interconnects cell death signals with appropriate mechanistic execution. Superoxide is potentially damaging, but also triggers mitochondrial cytochrome c release. While paraoxonase (PON) enzymes are known to protect against cardiovascular diseases, recent data revealed that PON2 attenuated mitochondrial radical formation and execution of cell death. Another famil…

research product

Paraoxonase-2 Reduces Oxidative Stress in Vascular Cells and Decreases Endoplasmic Reticulum Stress–Induced Caspase Activation

Background— In the vascular system, elevated levels of reactive oxygen species (ROS) produce oxidative stress and predispose to the development of atherosclerosis. Therefore, it is important to understand the systems producing and those scavenging vascular ROS. Here, we analyzed the ROS-reducing capability of paraoxonase-2 (PON2) in different vascular cells and its involvement in the endoplasmic reticulum stress pathway known as the unfolded protein response. Methods and Results— Quantitative real-time polymerase chain reaction and Western blotting revealed that PON2 is equally expressed in vascular cells and appears in 2 distinct glycosylated isoforms. By determining intracellular ROS, we…

research product