Synergistic effect of W incorporation and pulsed current mode on wear and tribocorrosion resistance of coatings grown by plasma electrolytic oxidation on 7075 Al alloy
Ceramic coatings were grown by plasma electrolytic oxidation on 7075 Al alloy using unipolar and bipolar pulsed current waveforms with 20 and 40% cathodic duty cycles, from a silicate-based bath without and with the addition of Na2WO4. Pancake-like morphology was dominant on the coatings grown by unipolar waveform, while the bipolar waveforms promoted volcano-like morphology, increased the roughness of the coating surface and the formation of more compact layers. The coatings produced using the bipolar waveforms provided higher resistances toward both tribocorrosion and dry sliding conditions, while further improvement was achieved by the presence of tungsten. The coatings produced in tungs…
The Effect of Electrolytic Solution Composition on the Structure, Corrosion, and Wear Resistance of PEO Coatings on AZ31 Magnesium Alloy
Plasma electrolytic oxidation coatings were prepared in aluminate, phosphate, and silicate-based electrolytic solutions using a soft-sparking regime in a multi-frequency stepped process to compare the structure, corrosion, and wear characteristics of the obtained coatings on AZ31 magnesium alloy. The XRD results indicated that all coatings consist of MgO and MgF2, while specific products such as Mg2SiO4, MgSiO3, Mg2P2O7, and MgAl2O4 were also present in specimens based on the selected solution. Surface morphology of the obtained coatings was strongly affected by the electrolyte composition. Aluminate-containing coating showed volcano-like, nodular particles and craters distributed over the …