The Tan 2Θ Theorem in fluid dynamics
We show that the generalized Reynolds number (in fluid dynamics) introduced by Ladyzhenskaya is closely related to the rotation of the positive spectral subspace of the Stokes block-operator in the underlying Hilbert space. We also explicitly evaluate the bottom of the negative spectrum of the Stokes operator and prove a sharp inequality relating the distance from the bottom of its spectrum to the origin and the length of the first positive gap.
Representation Theorems for Indefinite Quadratic Forms Revisited
The first and second representation theorems for sign-indefinite, not necessarily semi-bounded quadratic forms are revisited. New straightforward proofs of these theorems are given. A number of necessary and sufficient conditions ensuring the second representation theorem to hold is proved. A new simple and explicit example of a self-adjoint operator for which the second representation theorem does not hold is also provided.
Diagonalization of indefinite saddle point forms
We obtain sufficient conditions that ensure block diagonalization (by a direct rotation) of sign-indefinite symmetric sesquilinear forms as well as the associated operators that are semi-bounded neither from below nor from above. In the semi-bounded case, we refine the obtained results and, as an example, revisit the block Stokes operator from fluid dynamics.